Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pochih/FCN-pytorch
🚘 Easiest Fully Convolutional Networks
https://github.com/pochih/FCN-pytorch
computer-vision deep-learning fully-convolutional-networks pytorch semantic-segmentation
Last synced: 2 months ago
JSON representation
🚘 Easiest Fully Convolutional Networks
- Host: GitHub
- URL: https://github.com/pochih/FCN-pytorch
- Owner: pochih
- Created: 2017-10-12T08:42:10.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2023-07-06T21:15:35.000Z (over 1 year ago)
- Last Synced: 2024-08-04T00:02:50.973Z (6 months ago)
- Topics: computer-vision, deep-learning, fully-convolutional-networks, pytorch, semantic-segmentation
- Language: Python
- Homepage:
- Size: 59.1 MB
- Stars: 401
- Watchers: 11
- Forks: 143
- Open Issues: 28
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-semantic-segmentation - pytorch
README
[![Open Source Love](https://badges.frapsoft.com/os/v1/open-source-150x25.png?v=103)](https://github.com/ellerbrock/open-source-badges/)
## 🚘 The easiest implementation of fully convolutional networks
- Task: __semantic segmentation__, it's a very important task for automated driving
- The model is based on CVPR '15 best paper honorable mentioned [Fully Convolutional Networks for Semantic Segmentation](https://arxiv.org/abs/1411.4038)
## Results
### Trials### Training Procedures
## Performance
I train with two popular benchmark dataset: CamVid and Cityscapes
|dataset|n_class|pixel accuracy|
|---|---|---
|Cityscapes|20|96%
|CamVid|32|93%## Training
### Install packages
```bash
pip3 install -r requirements.txt
```and download pytorch 0.2.0 from [pytorch.org](pytorch.org)
and download [CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/) dataset (recommended) or [Cityscapes](https://www.cityscapes-dataset.com/) dataset
### Run the code
- default dataset is CamVidcreate a directory named "CamVid", and put data into it, then run python codes:
```python
python3 python/CamVid_utils.py
python3 python/train.py CamVid
```- or train with CityScapes
create a directory named "CityScapes", and put data into it, then run python codes:
```python
python3 python/CityScapes_utils.py
python3 python/train.py CityScapes
```## Author
Po-Chih Huang / [@pochih](https://pochih.github.io/)