https://github.com/podgorskiy/vae
Example of vanilla VAE for face image generation at resolution 128x128 using pytorch.
https://github.com/podgorskiy/vae
autoencoder celeba celeba-dataset deep-learning deep-neural-networks deeplearning faces pytorch vae variational-autoencoder
Last synced: 7 days ago
JSON representation
Example of vanilla VAE for face image generation at resolution 128x128 using pytorch.
- Host: GitHub
- URL: https://github.com/podgorskiy/vae
- Owner: podgorskiy
- Created: 2019-03-08T19:55:42.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-03-11T02:18:43.000Z (over 6 years ago)
- Last Synced: 2025-05-01T03:36:31.831Z (about 2 months ago)
- Topics: autoencoder, celeba, celeba-dataset, deep-learning, deep-neural-networks, deeplearning, faces, pytorch, vae, variational-autoencoder
- Language: Python
- Homepage:
- Size: 5.17 MB
- Stars: 73
- Watchers: 3
- Forks: 13
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Variational Autoencoder
Example of vanilla VAE for face image generation at resolution 128x128.Auto-Encoding Variational Bayes: https://arxiv.org/abs/1312.6114
Generation:
![]()
Original Faces vs. Reconstructed Faces:
![]()
## How to Run
You need to have pytorch >= v0.4.1 and cuda/cuDNN drivers installed.To install requirements:
```python
pip install -r requirements.txt
```To download and prepare dataset:
```python
python prepare_celeba.py
```To train:
```python
python VAE.py
```