https://github.com/pointer2alvee/complete-deep-learning
Comprehensive Deep Learning concepts & Architectures implemented using PyTorch.
https://github.com/pointer2alvee/complete-deep-learning
Last synced: 5 months ago
JSON representation
Comprehensive Deep Learning concepts & Architectures implemented using PyTorch.
- Host: GitHub
- URL: https://github.com/pointer2alvee/complete-deep-learning
- Owner: pointer2Alvee
- Created: 2025-03-06T09:00:37.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2025-03-06T09:10:32.000Z (11 months ago)
- Last Synced: 2025-03-06T10:23:50.818Z (11 months ago)
- Size: 1000 Bytes
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## π complete-deep-learning
#### π§ Overview
Complete Deep Learning concepts & Architectures implemented using PyTorch. This is a comprehensive Deep Learning roadmap and implementation using PyTorch β starting from core math foundations to state-of-the-art neural network architectures. The repository is designed to give a solid theoretical and practical understanding of deep learning, structured progressively to cover foundational concepts, mathematical intuition, model architectures, training, and evaluation.
#### π― Use Cases
- Implementing DL algorithms/models/concepts using python & pytorch
- Learning & implementing the mathematical foundation of deep learning using python & pytorch
- Learn deep learning from scratch with a mathematical + implementation-first approach
- Study & build neural networks with PyTorch
- Study & build DL architectures with PyTorch
- Prepare for interviews and research
- Use as a practical teaching/learning guide
- Reference architecture and code for deep learning projects
#### π’ Project Status
- Current Version: V1.0
- Actively maintained & expanded
#### π Repository Structure
```
complete-deep-learning
βββ assets
β βββ images
β
βββ datasets
β βββ images-text-audio-misc
β
βββ math-foundations
β βββ linear-algebra
β βββ calculus
β βββ probability-stats
β
βββ basic-neural-network-architecture
β βββ neuron-perceptron
β βββ neural-net-layers
β β βββ input-hidden-output-layers
β βββ activation-functions
β βββ ann (multilayer-perceptron)
β β βββ geometric-view
β β βββ ann-maths (forwardprop, error-los-cost, backrprop)
β β βββ ann-regression-clasification
β β βββ multi-layer-ann
β β βββ multi-output-ann
β β βββ model-depth-breadth
β βββ meta-parameters
β βββ hyper-parameters
β
βββ neural-network-concepts
β βββ regularization
β β βββ prevent-overfitting-underfitting
β β βββ weight-reg
β β βββ dropout
β β βββ data-augmentation
β β βββ nomralization
β β β βββ batch-nomralization
β β β βββ layer-nomralization
β β βββ early-stopping
β βββ optimization
β β βββ loss-cost-functions
β β βββ gradient-descent
β β | βββ vanilla-gd, sgd, minibatch-sgd
β β βββ adaptive-optimization-algorithms
β β | βββ momentum, nag, adagrad, rmsprop, adam, adamw
β β βββ learning-schedules
β β βββ weight-investigations
β β βββ numerical-stability
β β βββ meta-parameter-optimization
β β βββ hyper-parameter-optimization
β βββ generalization
β βββ cross-validation
β βββ overfitting-underfitting
β βββ hyper-parameter-tuning
β
βββ computational-performance
β βββ run-on-gpu
β
βββ advanced-neural-network-architecture
β βββ ffn
β βββ cnn-modern-cnn
β β βββ convolution
β β βββ cannonical-cnn
β β βββ cnn-adv-architectures
β βββ rnn
β β βββ lstm
β β βββ gru
β βββ gan
β βββ gnn
β βββ attention-mechanism
β βββ transformer-models
β β βββ bert
β βββ encoders
β βββ autoencoders
β
βββ model-training
β βββ transfer-learning
β βββ style-transfer
| βββ training-loop-structure (epoch, batch, loss logging)
| βββ callbacks (custom logging, checkpointing)
| βββ experiment-tracking (Weights & Biases, TensorBoard)
β βββ multitask-learning
β
βββ model-evaluation
| βββ accuracy-precision-recall-f1-auc-roc
| βββ confusion-matrix
β
βββ papers-to-code
```
### β¨ Features
- Covers Concepts, Mathematical implementations, DL nets and architectures
- Pure Python and Pytorch
- Modular, clean, and reusable code
- Educational and beginner-friendly
- Covers everything from perceptrons to transformers
- Clean, modular, and well-commented PyTorch implementations
- Visualization, training loops, and performance metrics
- Includes datasets for images, text, audio, and more
- Papers-to-Code section to implement SOTA research
### π Getting Started
- Knowledge Required : python, linear algebra, probability, statistics, numpy, matplotlib, scikit-learn, pytorch
#### π» Software Requirements
- IDE (VS Code) or jupyter notebook or google colab
- Python 3
#### π‘οΈ Tech Stack
- Python , PyTorch, TorchVision π»
- Numpy, Pandas, Matplotlib, Scikit-Learn π§©
#### βοΈ Installation
```
git clone https://github.com/pointer2Alvee/complete-deep-learning.git
cd comprehensive-deep-learning
```
#### π Usage
- Open .ipynb files inside each concept or NN architecture directory and
- Run them to see training/inference steps, plots, and results.
#### π Contents Breakdown
##### π Math Foundations
- Linear Algebra, Calculus, Probability, Statistics
##### π§± Neural Network Basics
- Perceptrons, Layers, Activations, MLPs
- Forward & Backpropagation math from scratch
- Depth vs Breadth of models
- Regression & Classification using ANN
##### π§ Deep Learning Concepts
- Regularization (Dropout, L2, Data Aug)
- Optimization (SGD, Adam, RMSProp, Schedules)
- Losses, Weight tuning, Meta & Hyperparams
##### βοΈ Advanced Architectures
- CNNs (classic + modern)
- RNNs, LSTM, GRU
- GANs, GNNs
- Transformers & BERT
- Autoencoders
##### ποΈββοΈ Model Training & Tracking
- Training Loops, Epochs, Batches
- Custom callbacks
- TensorBoard, Weights & Biases logging
- Transfer Learning & Style Transfer
- Multitask learning
##### π Evaluation
- Accuracy, Precision, Recall, F1, AUC-ROC
- Confusion Matrix
##### π¬ Research to Practice
- Paper Implementations β PyTorch Code
### π§ͺ Sample Topics Implemented
- β
Forward & Backpropagation from scratch
- β
CNN with PyTorch
- β
Regularization (Dropout, Weight Decay)
- β
Adam vs SGD Performance Comparison
- β
Image Classification using Transfer Learning
- β
Transformer Attention Visualizations
- β
Autoencoder for Denoising
- β
Style Transfer with Pretrained CNN
- β³ Upcoming : nlp, cv, llm, data engineering, feature engineering
### π§ Roadmap
- [x] Build foundational math notebooks
- [ ] Implement perceptron β MLP β CNN
- [ ] Add reinforcement learning section
- [ ] Implement GAN, RNN, Transformer
- [ ] More research paper implementations
### π€ Contributing
Contributions are welcomed!
1. Fork the repo.
2. Create a branch: ```git checkout -b feature/YourFeature```
3. Commit changes: ```git commit -m 'Add some feature'```
4. Push to branch: ```git push origin feature/YourFeature```
5. Open a Pull Request.
### πLicense
Distributed under the MIT License. See LICENSE.txt for more information.
### πAcknowledgements
- Special thanks to the open-source community / youtube for tools and resources.