An open API service indexing awesome lists of open source software.

https://github.com/pointer2alvee/complete-deep-learning

Comprehensive Deep Learning concepts & Architectures implemented using PyTorch.
https://github.com/pointer2alvee/complete-deep-learning

Last synced: 5 months ago
JSON representation

Comprehensive Deep Learning concepts & Architectures implemented using PyTorch.

Awesome Lists containing this project

README

          


Image 1
Image 2

## πŸ“œ complete-deep-learning
#### 🧠 Overview
Complete Deep Learning concepts & Architectures implemented using PyTorch. This is a comprehensive Deep Learning roadmap and implementation using PyTorch β€” starting from core math foundations to state-of-the-art neural network architectures. The repository is designed to give a solid theoretical and practical understanding of deep learning, structured progressively to cover foundational concepts, mathematical intuition, model architectures, training, and evaluation.

#### 🎯 Use Cases
- Implementing DL algorithms/models/concepts using python & pytorch
- Learning & implementing the mathematical foundation of deep learning using python & pytorch
- Learn deep learning from scratch with a mathematical + implementation-first approach
- Study & build neural networks with PyTorch
- Study & build DL architectures with PyTorch
- Prepare for interviews and research
- Use as a practical teaching/learning guide
- Reference architecture and code for deep learning projects

#### 🟒 Project Status
- Current Version: V1.0
- Actively maintained & expanded

#### πŸ“‚ Repository Structure
```
complete-deep-learning
β”œβ”€β”€ assets
β”‚ └── images
β”‚
β”œβ”€β”€ datasets
β”‚ └── images-text-audio-misc
β”‚
β”œβ”€β”€ math-foundations
β”‚ β”œβ”€β”€ linear-algebra
β”‚ β”œβ”€β”€ calculus
β”‚ └── probability-stats
β”‚
β”œβ”€β”€ basic-neural-network-architecture
β”‚ β”œβ”€β”€ neuron-perceptron
β”‚ β”œβ”€β”€ neural-net-layers
β”‚ β”‚ β”œβ”€β”€ input-hidden-output-layers
β”‚ β”œβ”€β”€ activation-functions
β”‚ β”œβ”€β”€ ann (multilayer-perceptron)
β”‚ β”‚ β”œβ”€β”€ geometric-view
β”‚ β”‚ β”œβ”€β”€ ann-maths (forwardprop, error-los-cost, backrprop)
β”‚ β”‚ β”œβ”€β”€ ann-regression-clasification
β”‚ β”‚ β”œβ”€β”€ multi-layer-ann
β”‚ β”‚ β”œβ”€β”€ multi-output-ann
β”‚ β”‚ └── model-depth-breadth
β”‚ β”œβ”€β”€ meta-parameters
β”‚ └── hyper-parameters
β”‚
β”œβ”€β”€ neural-network-concepts
β”‚ β”œβ”€β”€ regularization
β”‚ β”‚ β”œβ”€β”€ prevent-overfitting-underfitting
β”‚ β”‚ β”œβ”€β”€ weight-reg
β”‚ β”‚ β”œβ”€β”€ dropout
β”‚ β”‚ β”œβ”€β”€ data-augmentation
β”‚ β”‚ β”œβ”€β”€ nomralization
β”‚ β”‚ β”‚ β”œβ”€β”€ batch-nomralization
β”‚ β”‚ β”‚ └── layer-nomralization
β”‚ β”‚ └── early-stopping
β”‚ β”œβ”€β”€ optimization
β”‚ β”‚ β”œβ”€β”€ loss-cost-functions
β”‚ β”‚ β”œβ”€β”€ gradient-descent
β”‚ β”‚ | β”œβ”€β”€ vanilla-gd, sgd, minibatch-sgd
β”‚ β”‚ β”œβ”€β”€ adaptive-optimization-algorithms
β”‚ β”‚ | β”œβ”€β”€ momentum, nag, adagrad, rmsprop, adam, adamw
β”‚ β”‚ β”œβ”€β”€ learning-schedules
β”‚ β”‚ β”œβ”€β”€ weight-investigations
β”‚ β”‚ β”œβ”€β”€ numerical-stability
β”‚ β”‚ β”œβ”€β”€ meta-parameter-optimization
β”‚ β”‚ └── hyper-parameter-optimization
β”‚ └── generalization
β”‚ β”œβ”€β”€ cross-validation
β”‚ β”œβ”€β”€ overfitting-underfitting
β”‚ └── hyper-parameter-tuning
β”‚
β”œβ”€β”€ computational-performance
β”‚ └── run-on-gpu
β”‚
β”œβ”€β”€ advanced-neural-network-architecture
β”‚ β”œβ”€β”€ ffn
β”‚ β”œβ”€β”€ cnn-modern-cnn
β”‚ β”‚ β”œβ”€β”€ convolution
β”‚ β”‚ β”œβ”€β”€ cannonical-cnn
β”‚ β”‚ └── cnn-adv-architectures
β”‚ β”œβ”€β”€ rnn
β”‚ β”‚ β”œβ”€β”€ lstm
β”‚ β”‚ β”œβ”€β”€ gru
β”‚ β”œβ”€β”€ gan
β”‚ β”œβ”€β”€ gnn
β”‚ β”œβ”€β”€ attention-mechanism
β”‚ β”œβ”€β”€ transformer-models
β”‚ β”‚ └── bert
β”‚ └── encoders
β”‚ └── autoencoders
β”‚
β”œβ”€β”€ model-training
β”‚ β”œβ”€β”€ transfer-learning
β”‚ β”œβ”€β”€ style-transfer
| β”œβ”€β”€ training-loop-structure (epoch, batch, loss logging)
| β”œβ”€β”€ callbacks (custom logging, checkpointing)
| β”œβ”€β”€ experiment-tracking (Weights & Biases, TensorBoard)
β”‚ └── multitask-learning
β”‚
└── model-evaluation
| β”œβ”€β”€ accuracy-precision-recall-f1-auc-roc
| └── confusion-matrix
β”‚
└── papers-to-code
```

### ✨ Features
- Covers Concepts, Mathematical implementations, DL nets and architectures
- Pure Python and Pytorch
- Modular, clean, and reusable code
- Educational and beginner-friendly
- Covers everything from perceptrons to transformers
- Clean, modular, and well-commented PyTorch implementations
- Visualization, training loops, and performance metrics
- Includes datasets for images, text, audio, and more
- Papers-to-Code section to implement SOTA research

### πŸš€ Getting Started
- Knowledge Required : python, linear algebra, probability, statistics, numpy, matplotlib, scikit-learn, pytorch

#### πŸ’» Software Requirements
- IDE (VS Code) or jupyter notebook or google colab
- Python 3

#### πŸ›‘οΈ Tech Stack
- Python , PyTorch, TorchVision πŸ’»
- Numpy, Pandas, Matplotlib, Scikit-Learn 🧩

#### βš™οΈ Installation
```
git clone https://github.com/pointer2Alvee/complete-deep-learning.git
cd comprehensive-deep-learning
```

#### πŸ“– Usage
- Open .ipynb files inside each concept or NN architecture directory and
- Run them to see training/inference steps, plots, and results.

#### πŸ” Contents Breakdown
##### πŸ“š Math Foundations
- Linear Algebra, Calculus, Probability, Statistics

##### 🧱 Neural Network Basics
- Perceptrons, Layers, Activations, MLPs
- Forward & Backpropagation math from scratch
- Depth vs Breadth of models
- Regression & Classification using ANN

##### πŸ”§ Deep Learning Concepts
- Regularization (Dropout, L2, Data Aug)
- Optimization (SGD, Adam, RMSProp, Schedules)
- Losses, Weight tuning, Meta & Hyperparams

##### βš™οΈ Advanced Architectures
- CNNs (classic + modern)
- RNNs, LSTM, GRU
- GANs, GNNs
- Transformers & BERT
- Autoencoders

##### πŸ‹οΈβ€β™‚οΈ Model Training & Tracking
- Training Loops, Epochs, Batches
- Custom callbacks
- TensorBoard, Weights & Biases logging
- Transfer Learning & Style Transfer
- Multitask learning

##### πŸ“Š Evaluation
- Accuracy, Precision, Recall, F1, AUC-ROC
- Confusion Matrix

##### πŸ”¬ Research to Practice
- Paper Implementations β†’ PyTorch Code

### πŸ§ͺ Sample Topics Implemented
- βœ… Forward & Backpropagation from scratch
- βœ… CNN with PyTorch
- βœ… Regularization (Dropout, Weight Decay)
- βœ… Adam vs SGD Performance Comparison
- βœ… Image Classification using Transfer Learning
- βœ… Transformer Attention Visualizations
- βœ… Autoencoder for Denoising
- βœ… Style Transfer with Pretrained CNN

- ⏳ Upcoming : nlp, cv, llm, data engineering, feature engineering

### 🧭 Roadmap
- [x] Build foundational math notebooks
- [ ] Implement perceptron β†’ MLP β†’ CNN
- [ ] Add reinforcement learning section
- [ ] Implement GAN, RNN, Transformer
- [ ] More research paper implementations

### 🀝 Contributing
Contributions are welcomed!
1. Fork the repo.
2. Create a branch: ```git checkout -b feature/YourFeature```
3. Commit changes: ```git commit -m 'Add some feature'```
4. Push to branch: ```git push origin feature/YourFeature```
5. Open a Pull Request.

### πŸ“œLicense
Distributed under the MIT License. See LICENSE.txt for more information.

### πŸ™Acknowledgements
- Special thanks to the open-source community / youtube for tools and resources.