Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/polyaxon/traceml

Engine for ML/Data tracking, visualization, explainability, drift detection, and dashboards for Polyaxon.
https://github.com/polyaxon/traceml

dask data-exploration data-profiling data-quality data-quality-checks data-science data-visualization dataframes dataops explainable-ai matplotlib mlops pandas pandas-summary plotly pytorch spark statistics tensorflow tracking

Last synced: 3 days ago
JSON representation

Engine for ML/Data tracking, visualization, explainability, drift detection, and dashboards for Polyaxon.

Awesome Lists containing this project

README

        

[![License: Apache 2](https://img.shields.io/badge/License-apache2-green.svg)](LICENSE)
[![TraceML](https://github.com/polyaxon/traceml/actions/workflows/traceml.yml/badge.svg)](https://github.com/polyaxon/traceml/actions/workflows/traceml.yml)
[![Slack](https://img.shields.io/badge/chat-on%20slack-aadada.svg?logo=slack&longCache=true)](https://polyaxon.com/slack/)
[![Docs](https://img.shields.io/badge/docs-stable-brightgreen.svg?style=flat)](https://polyaxon.com/docs/)
[![GitHub](https://img.shields.io/badge/issue_tracker-github-blue?logo=github)](https://github.com/polyaxon/polyaxon/issues)
[![GitHub](https://img.shields.io/badge/roadmap-github-blue?logo=github)](https://github.com/polyaxon/polyaxon/milestones)

# TraceML

Engine for ML/Data tracking, visualization, explainability, drift detection, and dashboards for Polyaxon.

## Install

```bash
pip install traceml
```

If you would like to use the tracking features, you need to install `polyaxon` as well:

```bash
pip install polyaxon traceml
```

## [WIP] Local sandbox

> Coming soon

## Offline usage

You can enable the offline mode to track runs without an API:

```bash
export POLYAXON_OFFLINE="true"
```

Or passing the offline flag

```python
from traceml import tracking

tracking.init(..., is_offline=True, ...)
```

## Simple usage in a Python script

```python
import random

import traceml as tracking

tracking.init(
is_offline=True,
project='quick-start',
name="my-new-run",
description="trying TraceML",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)

# Tracking some data refs
tracking.log_data_ref(content=X_train, name='x_train')
tracking.log_data_ref(content=y_train, name='y_train')

# Tracking inputs
tracking.log_inputs(
batch_size=64,
dropout=0.2,
learning_rate=0.001,
optimizer="Adam"
)

def get_loss(step):
result = 10 / (step + 1)
noise = (random.random() - 0.5) * 0.5 * result
return result + noise

# Track metrics
for step in range(100):
loss = get_loss(step)
tracking.log_metrics(
loss=loss,
accuracy=(100 - loss) / 100.0,
)

# Track some one time results
tracking.log_outputs(validation_score=0.66)

# Optionally manually stop the tracking process
tracking.stop()
```

## Integration with deep learning and machine learning libraries and frameworks

### Keras

You can use TraceML's callback to automatically save all metrics and collect outputs and models, you can also track additional information using the logging methods:

```python
from traceml import tracking
from traceml.integrations.keras import Callback

tracking.init(
is_offline=True,
project='tracking-project',
name="keras-run",
description="trying TraceML & Keras",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)

tracking.log_inputs(
batch_size=64,
dropout=0.2,
learning_rate=0.001,
optimizer="Adam"
)
tracking.log_data_ref(content=x_train, name='x_train')
tracking.log_data_ref(content=y_train, name='y_train')
tracking.log_data_ref(content=x_test, name='x_test')
tracking.log_data_ref(content=y_test, name='y_test')

# ...

model.fit(
x_train,
y_train,
validation_data=(X_test, y_test),
epochs=epochs,
batch_size=100,
callbacks=[Callback()],
)
```

### PyTorch

You can log metrics, inputs, and outputs of Pytorch experiments using the tracking module:

```python
from traceml import tracking

tracking.init(
is_offline=True,
project='tracking-project',
name="pytorch-run",
description="trying TraceML & PyTorch",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)

tracking.log_inputs(
batch_size=64,
dropout=0.2,
learning_rate=0.001,
optimizer="Adam"
)

# Metrics
for batch_idx, (data, target) in enumerate(train_loader):
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
tracking.log_metrics(loss=loss)

asset_path = tracking.get_outputs_path('model.ckpt')
torch.save(model.state_dict(), asset_path)

# log model
tracking.log_artifact_ref(asset_path, framework="pytorch", ...)
```

### Tensorflow

You can log metrics, outputs, and models of Tensorflow experiments and distributed Tensorflow experiments using the tracking module:

```python
from traceml import tracking
from traceml.integrations.tensorflow import Callback

tracking.init(
is_offline=True,
project='tracking-project',
name="tf-run",
description="trying TraceML & Tensorflow",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)

tracking.log_inputs(
batch_size=64,
dropout=0.2,
learning_rate=0.001,
optimizer="Adam"
)

# log model
estimator.train(hooks=[Callback(log_image=True, log_histo=True, log_tensor=True)])
```

### Fastai

You can log metrics, outputs, and models of Fastai experiments using the tracking module:

```python
from traceml import tracking
from traceml.integrations.fastai import Callback

tracking.init(
is_offline=True,
project='tracking-project',
name="fastai-run",
description="trying TraceML & Fastai",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)

# Log model metrics
learn.fit(..., cbs=[Callback()])
```

### Pytorch Lightning

You can log metrics, outputs, and models of Pytorch Lightning experiments using the tracking module:

```python
from traceml import tracking
from traceml.integrations.pytorch_lightning import Callback

tracking.init(
is_offline=True,
project='tracking-project',
name="pytorch-lightning-run",
description="trying TraceML & Lightning",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)

...
trainer = pl.Trainer(
gpus=0,
progress_bar_refresh_rate=20,
max_epochs=2,
logger=Callback(),
)
```

### HuggingFace

You can log metrics, outputs, and models of HuggingFace experiments using the tracking module:

```python
from traceml import tracking
from traceml.integrations.hugging_face import Callback

tracking.init(
is_offline=True,
project='tracking-project',
name="hg-run",
description="trying TraceML & HuggingFace",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)

...
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
callbacks=[Callback],
# ...
)
```

## Tracking artifacts

```python
import altair as alt
import matplotlib.pyplot as plt
import numpy as np
import plotly.express as px
from bokeh.plotting import figure
from vega_datasets import data

from traceml import tracking

def plot_mpl_figure(step):
np.random.seed(19680801)
data = np.random.randn(2, 100)

figure, axs = plt.subplots(2, 2, figsize=(5, 5))
axs[0, 0].hist(data[0])
axs[1, 0].scatter(data[0], data[1])
axs[0, 1].plot(data[0], data[1])
axs[1, 1].hist2d(data[0], data[1])

tracking.log_mpl_image(figure, 'mpl_image', step=step)

def log_bokeh(step):
factors = ["a", "b", "c", "d", "e", "f", "g", "h"]
x = [50, 40, 65, 10, 25, 37, 80, 60]

dot = figure(title="Categorical Dot Plot", tools="", toolbar_location=None,
y_range=factors, x_range=[0, 100])

dot.segment(0, factors, x, factors, line_width=2, line_color="green", )
dot.circle(x, factors, size=15, fill_color="orange", line_color="green", line_width=3, )

factors = ["foo 123", "bar:0.2", "baz-10"]
x = ["foo 123", "foo 123", "foo 123", "bar:0.2", "bar:0.2", "bar:0.2", "baz-10", "baz-10",
"baz-10"]
y = ["foo 123", "bar:0.2", "baz-10", "foo 123", "bar:0.2", "baz-10", "foo 123", "bar:0.2",
"baz-10"]
colors = [
"#0B486B", "#79BD9A", "#CFF09E",
"#79BD9A", "#0B486B", "#79BD9A",
"#CFF09E", "#79BD9A", "#0B486B"
]

hm = figure(title="Categorical Heatmap", tools="hover", toolbar_location=None,
x_range=factors, y_range=factors)

hm.rect(x, y, color=colors, width=1, height=1)

tracking.log_bokeh_chart(name='confusion-bokeh', figure=hm, step=step)

def log_altair(step):
source = data.cars()

brush = alt.selection(type='interval')

points = alt.Chart(source).mark_point().encode(
x='Horsepower:Q',
y='Miles_per_Gallon:Q',
color=alt.condition(brush, 'Origin:N', alt.value('lightgray'))
).add_selection(
brush
)

bars = alt.Chart(source).mark_bar().encode(
y='Origin:N',
color='Origin:N',
x='count(Origin):Q'
).transform_filter(
brush
)

chart = points & bars

tracking.log_altair_chart(name='altair_chart', figure=chart, step=step)

def log_plotly(step):
df = px.data.tips()

fig = px.density_heatmap(df, x="total_bill", y="tip", facet_row="sex", facet_col="smoker")
tracking.log_plotly_chart(name="2d-hist", figure=fig, step=step)

plot_mpl_figure(100)
log_bokeh(100)
log_altair(100)
log_plotly(100)
```

## Tracking DataFrames

### Summary

An extension to [pandas](http://pandas.pydata.org/) dataframes describe function.

The module contains `DataFrameSummary` object that extend `describe()` with:

- **properties**
- dfs.columns_stats: counts, uniques, missing, missing_perc, and type per column
- dsf.columns_types: a count of the types of columns
- dfs[column]: more in depth summary of the column
- **function**
- summary(): extends the `describe()` function with the values with `columns_stats`

The `DataFrameSummary` expect a pandas `DataFrame` to summarise.

```python
from traceml.summary.df import DataFrameSummary

dfs = DataFrameSummary(df)
```

getting the columns types

```python
dfs.columns_types

numeric 9
bool 3
categorical 2
unique 1
date 1
constant 1
dtype: int64
```

getting the columns stats

```python
dfs.columns_stats

A B C D E
counts 5802 5794 5781 5781 4617
uniques 5802 3 5771 128 121
missing 0 8 21 21 1185
missing_perc 0% 0.14% 0.36% 0.36% 20.42%
types unique categorical numeric numeric numeric
```

getting a single column summary, e.g. numerical column

```python
# we can also access the column using numbers A[1]
dfs['A']

std 0.2827146
max 1.072792
min 0
variance 0.07992753
mean 0.5548516
5% 0.1603367
25% 0.3199776
50% 0.4968588
75% 0.8274732
95% 1.011255
iqr 0.5074956
kurtosis -1.208469
skewness 0.2679559
sum 3207.597
mad 0.2459508
cv 0.5095319
zeros_num 11
zeros_perc 0,1%
deviating_of_mean 21
deviating_of_mean_perc 0.36%
deviating_of_median 21
deviating_of_median_perc 0.36%
top_correlations {u'D': 0.702240243124, u'E': -0.663}
counts 5781
uniques 5771
missing 21
missing_perc 0.36%
types numeric
Name: A, dtype: object
```

### [WIP] Summaries

* [ ] Add summary analysis between columns, i.e. `dfs[[1, 2]]`

### [WIP] Visualizations

* [ ] Add summary visualization with matplotlib.
* [ ] Add summary visualization with plotly.
* [ ] Add summary visualization with altair.
* [ ] Add predefined profiling.

### [WIP] Catalog and Versions

* [ ] Add possibility to persist summary and link to a specific version.
* [ ] Integrate with quality libraries.