Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pottekkat/teachable-machine
A teachable image classifier that runs on any browser built using TensorFlow JS
https://github.com/pottekkat/teachable-machine
computer-vision data-science deep-learning image-processing machine-learning tensorflow tensorflow-js
Last synced: about 1 month ago
JSON representation
A teachable image classifier that runs on any browser built using TensorFlow JS
- Host: GitHub
- URL: https://github.com/pottekkat/teachable-machine
- Owner: pottekkat
- License: mit
- Created: 2020-07-03T06:35:12.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-07-03T08:25:25.000Z (over 4 years ago)
- Last Synced: 2024-11-10T12:39:25.647Z (3 months ago)
- Topics: computer-vision, data-science, deep-learning, image-processing, machine-learning, tensorflow, tensorflow-js
- Language: HTML
- Homepage: https://navendu.me/teachable-machine
- Size: 157 KB
- Stars: 3
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Teachable Image Classifer in Web Browser using TensorFlow JS
[![HitCount](http://hits.dwyl.com/navendu-pottekkat/teachable-machine.svg)](http://hits.dwyl.com/navendu-pottekkat/teachable-machine)
[![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/navendu-pottekkat/navendu-pottekkat.github.io/issues)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Twitter](https://img.shields.io/twitter/follow/navendu_23.svg?style=social&label=@navendu_23)](https://twitter.com/navendu_23)A teachable image classifier that runs on any browser built using TensorFlow JS.
The demo is live at [navendu.me/teachable-machine](https://navendu.me/teachable-machine).
# Preview
![](./preview.png)
# Usage
Add labels to upto 3 categories and click add to train the model using that image.
Add more images to improve the accuracy.
Once the model is trained, the predictions and the probability would be displayed on top.
### Please leave a star if you like this project!