Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ppogg/YOLOv5-Lite

๐Ÿ…๐Ÿ…๐Ÿ…YOLOv5-Lite: Evolved from yolov5 and the size of model is only 900+kb (int8) and 1.7M (fp16). Reach 15 FPS on the Raspberry Pi 4B~
https://github.com/ppogg/YOLOv5-Lite

android-app mnn mobilenet ncnn onnxruntime openvivo picodet pplcnet pytorch repvgg shufflenetv2 tensorrt tflite transformer yolov5

Last synced: 3 months ago
JSON representation

๐Ÿ…๐Ÿ…๐Ÿ…YOLOv5-Lite: Evolved from yolov5 and the size of model is only 900+kb (int8) and 1.7M (fp16). Reach 15 FPS on the Raspberry Pi 4B~

Awesome Lists containing this project

README

        

# YOLOv5-Lite๏ผšLighter, faster and easier to deploy ![](https://zenodo.org/badge/DOI/10.5281/zenodo.5241425.svg)

![่ฎบๆ–‡ๆ’ๅ›พ](https://user-images.githubusercontent.com/82716366/167448925-a431d3a4-ad5d-491d-be95-c90701122a54.png)

Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, and fewer parameters) and faster (add shuffle channel, yolov5 head for channel reduce. It can infer at least 10+ FPS On the Raspberry Pi 4B when input the frame with 320ร—320) and is easier to deploy (removing the Focus layer and four slice operations, reducing the model quantization accuracy to an acceptable range).

![image](https://user-images.githubusercontent.com/82716366/135564164-3ec169c8-93a7-4ea3-b0dc-40f1059601ef.png)

## Comparison of ablation experiment results

ID|Model | Input_size|Flops| Params | Size๏ผˆM๏ผ‰ |[email protected]|[email protected]:0.95
:-----:|:-----:|:-----:|:----------:|:----:|:----:|:----:|:----:|
001| yolo-fastest| 320ร—320|0.25G|0.35M|1.4| 24.4| -
002| YOLOv5-Liteeours|320ร—320|0.73G|0.78M|1.7| 35.1|-|
003| NanoDet-m| 320ร—320| 0.72G|0.95M|1.8|- |20.6
004| yolo-fastest-xl| 320ร—320|0.72G|0.92M|3.5| 34.3| -
005| YOLOXNano|416ร—416|1.08G|0.91M|7.3(fp32)| -|25.8|
006| yolov3-tiny| 416ร—416| 6.96G|6.06M|23.0| 33.1|16.6
007| yolov4-tiny| 416ร—416| 5.62G|8.86M| 33.7|40.2|21.7
008| YOLOv5-Litesours| 416ร—416|1.66G |1.64M|3.4| 42.0|25.2
009| YOLOv5-Litecours| 512ร—512|5.92G |4.57M|9.2| 50.9|32.5|
010| NanoDet-EfficientLite2| 512ร—512| 7.12G|4.71M|18.3|- |32.6
011| YOLOv5s(6.0)| 640ร—640| 16.5G|7.23M|14.0| 56.0|37.2
012| YOLOv5-Litegours| 640ร—640|15.6G |5.39M|10.9| 57.6|39.1|

See the wiki: https://github.com/ppogg/YOLOv5-Lite/wiki/Test-the-map-of-models-about-coco

## Comparison on different platforms

Equipment|Computing backend|System|Input|Framework|v5lite-e|v5lite-s|v5lite-c|v5lite-g|YOLOv5s
:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:
Inter|@i5-10210U|window(x86)|640ร—640|openvino|-|-|46ms|-|131ms
Nvidia|@RTX 2080Ti|Linux(x86)|640ร—640|torch|-|-|-|15ms|14ms
Redmi K30|@Snapdragon 730G|Android(armv8)|320ร—320|ncnn|27ms|38ms|-|-|163ms
Xiaomi 10|@Snapdragon 865|Android(armv8)|320ร—320|ncnn|10ms|14ms|-|-|163ms
Raspberrypi 4B|@ARM Cortex-A72|Linux(arm64)|320ร—320|ncnn|-|84ms|-|-|371ms
Raspberrypi 4B|@ARM Cortex-A72|Linux(arm64)|320ร—320|mnn|-|71ms|-|-|356ms
AXera-Pi|Cortex A7@CPU
3.6TOPs @NPU|Linux(arm64)|640ร—640|axpi|-|-|-|22ms|22ms

### The tutorial of 15FPS on Raspberry Pi 4B:
[https://zhuanlan.zhihu.com/p/672633849](https://zhuanlan.zhihu.com/p/672633849)

* The above is a 4-thread test benchmark
* Raspberrypi 4B enable bf16s optimization๏ผŒ[Raspberrypi 64 Bit OS](http://downloads.raspberrypi.org/raspios_arm64/images/raspios_arm64-2020-08-24/)

### qqไบคๆต็พค๏ผš993965802

ๅ…ฅ็พค็ญ”ๆกˆ:ๅ‰ชๆž or ่’ธ้ฆ or ้‡ๅŒ– or ไฝŽ็งฉๅˆ†่งฃ๏ผˆไปปๆ„ๅ…ถไธ€ๅ‡ๅฏ๏ผ‰

## ยทModel Zooยท

#### @v5lite-e:

Model|Size|Backbone|Head|Framework|Design for
:---:|:---:|:---:|:---:|:---:|:---
v5Lite-e.pt|1.7m|shufflenetv2๏ผˆMegvii๏ผ‰|v5Litee-head|Pytorch|Arm-cpu
v5Lite-e.bin
v5Lite-e.param|1.7m|shufflenetv2|v5Litee-head|ncnn|Arm-cpu
v5Lite-e-int8.bin
v5Lite-e-int8.param|0.9m|shufflenetv2|v5Litee-head|ncnn|Arm-cpu
v5Lite-e-fp32.mnn|3.0m|shufflenetv2|v5Litee-head|mnn|Arm-cpu
v5Lite-e-fp32.tnnmodel
v5Lite-e-fp32.tnnproto|2.9m|shufflenetv2|v5Litee-head|tnn|arm-cpu
v5Lite-e-320.onnx|3.1m|shufflenetv2|v5Litee-head|onnxruntime|x86-cpu

#### @v5lite-s:

Model|Size|Backbone|Head|Framework|Design for
:---:|:---:|:---:|:---:|:---:|:---
v5Lite-s.pt|3.4m|shufflenetv2๏ผˆMegvii๏ผ‰|v5Lites-head|Pytorch|Arm-cpu
v5Lite-s.bin
v5Lite-s.param|3.3m|shufflenetv2|v5Lites-head|ncnn|Arm-cpu
v5Lite-s-int8.bin
v5Lite-s-int8.param|1.7m|shufflenetv2|v5Lites-head|ncnn|Arm-cpu
v5Lite-s.mnn|3.3m|shufflenetv2|v5Lites-head|mnn|Arm-cpu
v5Lite-s-int4.mnn|987k|shufflenetv2|v5Lites-head|mnn|Arm-cpu
v5Lite-s-fp16.bin
v5Lite-s-fp16.xml|3.4m|shufflenetv2|v5Lites-head|openvivo|x86-cpu
v5Lite-s-fp32.bin
v5Lite-s-fp32.xml|6.8m|shufflenetv2|v5Lites-head|openvivo|x86-cpu
v5Lite-s-fp16.tflite|3.3m|shufflenetv2|v5Lites-head|tflite|arm-cpu
v5Lite-s-fp32.tflite|6.7m|shufflenetv2|v5Lites-head|tflite|arm-cpu
v5Lite-s-int8.tflite|1.8m|shufflenetv2|v5Lites-head|tflite|arm-cpu
v5Lite-s-416.onnx|6.4m|shufflenetv2|v5Lites-head|onnxruntime|x86-cpu

#### @v5lite-c:

Model|Size|Backbone|Head|Framework|Design for
:---:|:---:|:---:|:---:|:---:|:---:
v5Lite-c.pt|9m|PPLcnet๏ผˆBaidu๏ผ‰|v5s-head|Pytorch|x86-cpu / x86-vpu
v5Lite-c.bin
v5Lite-c.xml|8.7m|PPLcnet|v5s-head|openvivo|x86-cpu / x86-vpu
v5Lite-c-512.onnx|18m|PPLcnet|v5s-head|onnxruntime|x86-cpu

#### @v5lite-g:

Model|Size|Backbone|Head|Framework|Design for
:---:|:---:|:---:|:---:|:---:|:---:
v5Lite-g.pt|10.9m|Repvgg๏ผˆTsinghua๏ผ‰|v5Liteg-head|Pytorch|x86-gpu / arm-gpu / arm-npu
v5Lite-g-int8.engine|8.5m|Repvgg-yolov5|v5Liteg-head|Tensorrt|x86-gpu / arm-gpu / arm-npu
v5lite-g-int8.tmfile|8.7m|Repvgg-yolov5|v5Liteg-head|Tengine| arm-npu
v5Lite-g-640.onnx|21m|Repvgg-yolov5|yolov5-head|onnxruntime|x86-cpu
v5Lite-g-640.joint|7.1m|Repvgg-yolov5|yolov5-head|axpi|arm-npu

#### Download Link๏ผš

> - [ ] `v5lite-e.pt`: | [Baidu Drive](https://pan.baidu.com/s/1bjXo7KIFkOnB3pxixHeMPQ) | [Google Drive](https://drive.google.com/file/d/1_DvT_qjznuE-ev_pDdGKwRV3MjZ3Zos8/view?usp=sharing) |

>> |โ”€โ”€โ”€โ”€โ”€โ”€`ncnn-fp16`: | [Baidu Drive](https://pan.baidu.com/s/1_QvWvkhHB7kdcRZ6k4at1g) | [Google Drive](https://drive.google.com/drive/folders/1w4mThJmqjhT1deIXMQAQ5xjWI3JNyzUl?usp=sharing) |

>> |โ”€โ”€โ”€โ”€โ”€โ”€`ncnn-int8`: | [Baidu Drive](https://pan.baidu.com/s/1JO8qbbVx6zJ-6aq5EgM6PA) | [Google Drive](https://drive.google.com/drive/folders/1YNtNVWlRqN8Dwc_9AtRkN0LFkDeJ92gN?usp=sharing) |

>> |โ”€โ”€โ”€โ”€โ”€โ”€`mnn-e_bf16`: | [Google Drive](https://drive.google.com/file/d/1_yGGCJFat2bjaKEwxJjrFcU2mGEhH8I3/view?usp=sharing) |

>> |โ”€โ”€โ”€โ”€โ”€โ”€`mnn-d_bf16`: | [Google Drive](https://drive.google.com/file/d/1TqijmdQtWd6ZUr2CiNLuHCEQnPUw1oVu/view?usp=sharing)|

>> โ””โ”€โ”€โ”€โ”€โ”€โ”€`onnx-fp32`: | [Baidu Drive](https://pan.baidu.com/s/1zIqKmOavRIrV8UJxbQWvhA) | [Google Drive](https://drive.google.com/file/d/1ot9eNlFMqMEzt_FHf0SkDHj1fOprOnTU/view?usp=sharing) |

> - [ ] `v5lite-s.pt`: | [Baidu Drive](https://pan.baidu.com/s/1j0n0K1kqfv1Ouwa2QSnzCQ) | [Google Drive](https://drive.google.com/file/d/1ccLTmGB5AkKPjDOyxF3tW7JxGWemph9f/view?usp=sharing) |

>> |โ”€โ”€โ”€โ”€โ”€โ”€`ncnn-fp16`: | [Baidu Drive](https://pan.baidu.com/s/1kWtwx1C0OTTxbwqJyIyXWg) | [Google Drive](https://drive.google.com/drive/folders/1w4mThJmqjhT1deIXMQAQ5xjWI3JNyzUl?usp=sharing) |

>> |โ”€โ”€โ”€โ”€โ”€โ”€`ncnn-int8`: | [Baidu Drive](https://pan.baidu.com/s/1QX6-oNynrW-f3i0P0Hqe4w) | [Google Drive](https://drive.google.com/drive/folders/1YNtNVWlRqN8Dwc_9AtRkN0LFkDeJ92gN?usp=sharing) |

>> โ””โ”€โ”€โ”€โ”€โ”€โ”€`tengine-fp32`: | [Baidu Drive](https://pan.baidu.com/s/123r630O8Fco7X59wFU1crA) | [Google Drive](https://drive.google.com/drive/folders/1VWmI2BC9MjH7BsrOz4VlSDVnZMXaxGOE?usp=sharing) |

> - [ ] `v5lite-c.pt`: [Baidu Drive](https://pan.baidu.com/s/1obs6uRB79m8e3uASVR6P1A) | [Google Drive](https://drive.google.com/file/d/1lHYRQKjqKCRXghUjwWkUB0HQ8ccKH6qa/view?usp=sharing) |

>> โ””โ”€โ”€โ”€โ”€โ”€โ”€`openvino-fp16`: | [Baidu Drive](https://pan.baidu.com/s/18p8HAyGJdmo2hham250b4A) | [Google Drive](https://drive.google.com/drive/folders/1s4KPSC4B0shG0INmQ6kZuPLnlUKAATyv?usp=sharing) |

> - [ ] `v5lite-g.pt`: | [Baidu Drive](https://pan.baidu.com/s/14zdTiTMI_9yTBgKGbv9pQw) | [Google Drive](https://drive.google.com/file/d/1oftzqOREGqDCerf7DtD5BZp9YWELlkMe/view?usp=sharing) |

>> โ””โ”€โ”€โ”€โ”€โ”€โ”€`axpi-int8`: [Google Drive](https://github.com/AXERA-TECH/ax-models/blob/main/ax620/v5Lite-g-sim-640.joint) |

Baidu Drive Password: `pogg`

#### v5lite-s model: TFLite Float32, Float16, INT8, Dynamic range quantization, ONNX, TFJS, TensorRT, OpenVINO IR FP32/FP16, Myriad Inference Engin Blob, CoreML
[https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite](https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite)

#### Thanks for PINTO0309:[https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite](https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite)

##

How to use

Install

[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ppogg/YOLOv5-Lite/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):

```bash
$ git clone https://github.com/ppogg/YOLOv5-Lite
$ cd YOLOv5-Lite
$ pip install -r requirements.txt
```

Inference with detect.py

`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5-Lite release](https://github.com/ppogg/YOLOv5-Lite/releases) and saving results to `runs/detect`.

```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```

Training

```bash
$ python train.py --data coco.yaml --cfg v5lite-e.yaml --weights v5lite-e.pt --batch-size 128
v5lite-s.yaml v5lite-s.pt 128
v5lite-c.yaml v5lite-c.pt 96
v5lite-g.yaml v5lite-g.pt 64
```

If you use multi-gpu. It's faster several times:

```bash
$ python -m torch.distributed.launch --nproc_per_node 2 train.py
```

DataSet

Training set and test set distribution ๏ผˆthe path with xx.jpg๏ผ‰

```bash
train: ../coco/images/train2017/
val: ../coco/images/val2017/
```
```bash
โ”œโ”€โ”€ images # xx.jpg example
โ”‚ โ”œโ”€โ”€ train2017
โ”‚ โ”‚ โ”œโ”€โ”€ 000001.jpg
โ”‚ โ”‚ โ”œโ”€โ”€ 000002.jpg
โ”‚ โ”‚ โ””โ”€โ”€ 000003.jpg
โ”‚ โ””โ”€โ”€ val2017
โ”‚ โ”œโ”€โ”€ 100001.jpg
โ”‚ โ”œโ”€โ”€ 100002.jpg
โ”‚ โ””โ”€โ”€ 100003.jpg
โ””โ”€โ”€ labels # xx.txt example
โ”œโ”€โ”€ train2017
โ”‚ โ”œโ”€โ”€ 000001.txt
โ”‚ โ”œโ”€โ”€ 000002.txt
โ”‚ โ””โ”€โ”€ 000003.txt
โ””โ”€โ”€ val2017
โ”œโ”€โ”€ 100001.txt
โ”œโ”€โ”€ 100002.txt
โ””โ”€โ”€ 100003.txt
```

Auto LabelImg

[**Link** ๏ผšhttps://github.com/ppogg/AutoLabelImg](https://github.com/ppogg/AutoLabelImg)

You can use LabelImg based YOLOv5-5.0 and YOLOv5-Lite to AutoAnnotate, biubiubiu ๐Ÿš€ ๐Ÿš€ ๐Ÿš€


Model Hub

Here, the original components of YOLOv5 and the reproduced components of YOLOv5-Lite are organized and stored in the [model hub](https://github.com/ppogg/YOLOv5-Lite/tree/master/models/hub)๏ผš

![modelhub](https://user-images.githubusercontent.com/82716366/146787562-e2c1c4c1-726e-4efc-9eae-d92f34333e8d.jpg)


Heatmap Analysis


```bash
$ python main.py --type all
```

![่ฎบๆ–‡ๆ’ๅ›พ2](https://user-images.githubusercontent.com/82716366/167449474-3689c2bf-197a-4403-849c-b85db6bcc476.png)

Updating ...

## How to deploy

[**ncnn**](https://github.com/ppogg/YOLOv5-Lite/blob/master/cpp_demo/ncnn/README.md) for arm-cpu

[**mnn**](https://github.com/ppogg/YOLOv5-Lite/blob/master/cpp_demo/mnn/README.md) for arm-cpu

[**openvino**](https://github.com/ppogg/YOLOv5-Lite/blob/master/python_demo/openvino/README.md) x86-cpu or x86-vpu

[**tensorrt(C++)**](https://github.com/ppogg/YOLOv5-Lite/blob/master/cpp_demo/tensorrt/README.md) for arm-gpu or arm-npu or x86-gpu

[**tensorrt(Python)**](https://github.com/ppogg/YOLOv5-Lite/tree/master/python_demo/tensorrt) for arm-gpu or arm-npu or x86-gpu

[**Android**](https://github.com/ppogg/YOLOv5-Lite/blob/master/android_demo/ncnn-android-v5lite/README.md) for arm-cpu

## Android_demo

This is a Redmi phone, the processor is Snapdragon 730G, and yolov5-lite is used for detection. The performance is as follows:

link: https://github.com/ppogg/YOLOv5-Lite/tree/master/android_demo/ncnn-android-v5lite

Android_v5Lite-s: https://drive.google.com/file/d/1CtohY68N2B9XYuqFLiTp-Nd2kuFWgAUR/view?usp=sharing

Android_v5Lite-g: https://drive.google.com/file/d/1FnvkWxxP_aZwhi000xjIuhJ_OhqOUJcj/view?usp=sharing

new android app:[link] https://pan.baidu.com/s/1PRhW4fI1jq8VboPyishcIQ [keyword] pogg


## More detailed explanation

#### Detailed model link:

What is YOLOv5-Lite S/E model:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/400545131](https://zhuanlan.zhihu.com/p/400545131)

What is YOLOv5-Lite C model:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/420737659](https://zhuanlan.zhihu.com/p/420737659)

What is YOLOv5-Lite G model:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/410874403](https://zhuanlan.zhihu.com/p/410874403)

How to deploy on ncnn with fp16 or int8:
csdn link (Chinese): [https://blog.csdn.net/weixin_45829462/article/details/119787840](https://blog.csdn.net/weixin_45829462/article/details/119787840)

How to deploy on mnn with fp16 or int8:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/672633849](https://zhuanlan.zhihu.com/p/672633849)

How to deploy on onnxruntime:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/476533259](https://zhuanlan.zhihu.com/p/476533259)(old version)

How to deploy on tensorrt:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/478630138](https://zhuanlan.zhihu.com/p/478630138)

How to optimize on tensorrt:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/463074494](https://zhuanlan.zhihu.com/p/463074494)

## Reference

https://github.com/ultralytics/yolov5

https://github.com/megvii-model/ShuffleNet-Series

https://github.com/Tencent/ncnn

## Citing YOLOv5-Lite
If you use YOLOv5-Lite in your research, please cite our work and give a star โญ:

```
@misc{yolov5lite2021,
title = {YOLOv5-Lite: Lighter, faster and easier to deploy},
author = {Xiangrong Chen and Ziman Gong},
doi = {10.5281/zenodo.5241425}
year={2021}
}
```