Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ppogg/YOLOv5-Lite
๐
๐
๐
YOLOv5-Lite: Evolved from yolov5 and the size of model is only 900+kb (int8) and 1.7M (fp16). Reach 15 FPS on the Raspberry Pi 4B~
https://github.com/ppogg/YOLOv5-Lite
android-app mnn mobilenet ncnn onnxruntime openvivo picodet pplcnet pytorch repvgg shufflenetv2 tensorrt tflite transformer yolov5
Last synced: 16 days ago
JSON representation
๐ ๐ ๐ YOLOv5-Lite: Evolved from yolov5 and the size of model is only 900+kb (int8) and 1.7M (fp16). Reach 15 FPS on the Raspberry Pi 4B~
- Host: GitHub
- URL: https://github.com/ppogg/YOLOv5-Lite
- Owner: ppogg
- License: gpl-3.0
- Created: 2021-08-16T14:24:00.000Z (about 3 years ago)
- Default Branch: master
- Last Pushed: 2024-04-06T13:34:50.000Z (7 months ago)
- Last Synced: 2024-04-07T13:26:11.524Z (7 months ago)
- Topics: android-app, mnn, mobilenet, ncnn, onnxruntime, openvivo, picodet, pplcnet, pytorch, repvgg, shufflenetv2, tensorrt, tflite, transformer, yolov5
- Language: C++
- Homepage:
- Size: 67.8 MB
- Stars: 2,075
- Watchers: 27
- Forks: 386
- Open Issues: 49
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-yolo-object-detection - ppogg/YOLOv5-Lite - Lite?style=social"/> : ๐ ๐ ๐ YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 930+kb (int8) and 1.7M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320ร320~ (Lighter and Deployment Frameworks)
- awesome-yolo-object-detection - ppogg/YOLOv5-Lite - Lite?style=social"/> : ๐ ๐ ๐ YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 930+kb (int8) and 1.7M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320ร320~ (Lighter and Deployment Frameworks)
README
# YOLOv5-Lite๏ผLighter, faster and easier to deploy ![](https://zenodo.org/badge/DOI/10.5281/zenodo.5241425.svg)
![่ฎบๆๆๅพ](https://user-images.githubusercontent.com/82716366/167448925-a431d3a4-ad5d-491d-be95-c90701122a54.png)
Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, and fewer parameters) and faster (add shuffle channel, yolov5 head for channel reduce. It can infer at least 10+ FPS On the Raspberry Pi 4B when input the frame with 320ร320) and is easier to deploy (removing the Focus layer and four slice operations, reducing the model quantization accuracy to an acceptable range).
![image](https://user-images.githubusercontent.com/82716366/135564164-3ec169c8-93a7-4ea3-b0dc-40f1059601ef.png)
## Comparison of ablation experiment results
ID|Model | Input_size|Flops| Params | Size๏ผM๏ผ |[email protected]|[email protected]:0.95
:-----:|:-----:|:-----:|:----------:|:----:|:----:|:----:|:----:|
001| yolo-fastest| 320ร320|0.25G|0.35M|1.4| 24.4| -
002| YOLOv5-Liteeours|320ร320|0.73G|0.78M|1.7| 35.1|-|
003| NanoDet-m| 320ร320| 0.72G|0.95M|1.8|- |20.6
004| yolo-fastest-xl| 320ร320|0.72G|0.92M|3.5| 34.3| -
005| YOLOXNano|416ร416|1.08G|0.91M|7.3(fp32)| -|25.8|
006| yolov3-tiny| 416ร416| 6.96G|6.06M|23.0| 33.1|16.6
007| yolov4-tiny| 416ร416| 5.62G|8.86M| 33.7|40.2|21.7
008| YOLOv5-Litesours| 416ร416|1.66G |1.64M|3.4| 42.0|25.2
009| YOLOv5-Litecours| 512ร512|5.92G |4.57M|9.2| 50.9|32.5|
010| NanoDet-EfficientLite2| 512ร512| 7.12G|4.71M|18.3|- |32.6
011| YOLOv5s(6.0)| 640ร640| 16.5G|7.23M|14.0| 56.0|37.2
012| YOLOv5-Litegours| 640ร640|15.6G |5.39M|10.9| 57.6|39.1|See the wiki: https://github.com/ppogg/YOLOv5-Lite/wiki/Test-the-map-of-models-about-coco
## Comparison on different platforms
Equipment|Computing backend|System|Input|Framework|v5lite-e|v5lite-s|v5lite-c|v5lite-g|YOLOv5s
:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:
Inter|@i5-10210U|window(x86)|640ร640|openvino|-|-|46ms|-|131ms
Nvidia|@RTX 2080Ti|Linux(x86)|640ร640|torch|-|-|-|15ms|14ms
Redmi K30|@Snapdragon 730G|Android(armv8)|320ร320|ncnn|27ms|38ms|-|-|163ms
Xiaomi 10|@Snapdragon 865|Android(armv8)|320ร320|ncnn|10ms|14ms|-|-|163ms
Raspberrypi 4B|@ARM Cortex-A72|Linux(arm64)|320ร320|ncnn|-|84ms|-|-|371ms
Raspberrypi 4B|@ARM Cortex-A72|Linux(arm64)|320ร320|mnn|-|71ms|-|-|356ms
AXera-Pi|Cortex A7@CPU
3.6TOPs @NPU|Linux(arm64)|640ร640|axpi|-|-|-|22ms|22ms### The tutorial of 15FPS on Raspberry Pi 4B:
[https://zhuanlan.zhihu.com/p/672633849](https://zhuanlan.zhihu.com/p/672633849)* The above is a 4-thread test benchmark
* Raspberrypi 4B enable bf16s optimization๏ผ[Raspberrypi 64 Bit OS](http://downloads.raspberrypi.org/raspios_arm64/images/raspios_arm64-2020-08-24/)### qqไบคๆต็พค๏ผ993965802
ๅ ฅ็พค็ญๆก:ๅชๆ or ่ธ้ฆ or ้ๅ or ไฝ็งฉๅ่งฃ๏ผไปปๆๅ ถไธๅๅฏ๏ผ
## ยทModel Zooยท
#### @v5lite-e:
Model|Size|Backbone|Head|Framework|Design for
:---:|:---:|:---:|:---:|:---:|:---
v5Lite-e.pt|1.7m|shufflenetv2๏ผMegvii๏ผ|v5Litee-head|Pytorch|Arm-cpu
v5Lite-e.bin
v5Lite-e.param|1.7m|shufflenetv2|v5Litee-head|ncnn|Arm-cpu
v5Lite-e-int8.bin
v5Lite-e-int8.param|0.9m|shufflenetv2|v5Litee-head|ncnn|Arm-cpu
v5Lite-e-fp32.mnn|3.0m|shufflenetv2|v5Litee-head|mnn|Arm-cpu
v5Lite-e-fp32.tnnmodel
v5Lite-e-fp32.tnnproto|2.9m|shufflenetv2|v5Litee-head|tnn|arm-cpu
v5Lite-e-320.onnx|3.1m|shufflenetv2|v5Litee-head|onnxruntime|x86-cpu#### @v5lite-s:
Model|Size|Backbone|Head|Framework|Design for
:---:|:---:|:---:|:---:|:---:|:---
v5Lite-s.pt|3.4m|shufflenetv2๏ผMegvii๏ผ|v5Lites-head|Pytorch|Arm-cpu
v5Lite-s.bin
v5Lite-s.param|3.3m|shufflenetv2|v5Lites-head|ncnn|Arm-cpu
v5Lite-s-int8.bin
v5Lite-s-int8.param|1.7m|shufflenetv2|v5Lites-head|ncnn|Arm-cpu
v5Lite-s.mnn|3.3m|shufflenetv2|v5Lites-head|mnn|Arm-cpu
v5Lite-s-int4.mnn|987k|shufflenetv2|v5Lites-head|mnn|Arm-cpu
v5Lite-s-fp16.bin
v5Lite-s-fp16.xml|3.4m|shufflenetv2|v5Lites-head|openvivo|x86-cpu
v5Lite-s-fp32.bin
v5Lite-s-fp32.xml|6.8m|shufflenetv2|v5Lites-head|openvivo|x86-cpu
v5Lite-s-fp16.tflite|3.3m|shufflenetv2|v5Lites-head|tflite|arm-cpu
v5Lite-s-fp32.tflite|6.7m|shufflenetv2|v5Lites-head|tflite|arm-cpu
v5Lite-s-int8.tflite|1.8m|shufflenetv2|v5Lites-head|tflite|arm-cpu
v5Lite-s-416.onnx|6.4m|shufflenetv2|v5Lites-head|onnxruntime|x86-cpu#### @v5lite-c:
Model|Size|Backbone|Head|Framework|Design for
:---:|:---:|:---:|:---:|:---:|:---:
v5Lite-c.pt|9m|PPLcnet๏ผBaidu๏ผ|v5s-head|Pytorch|x86-cpu / x86-vpu
v5Lite-c.bin
v5Lite-c.xml|8.7m|PPLcnet|v5s-head|openvivo|x86-cpu / x86-vpu
v5Lite-c-512.onnx|18m|PPLcnet|v5s-head|onnxruntime|x86-cpu#### @v5lite-g:
Model|Size|Backbone|Head|Framework|Design for
:---:|:---:|:---:|:---:|:---:|:---:
v5Lite-g.pt|10.9m|Repvgg๏ผTsinghua๏ผ|v5Liteg-head|Pytorch|x86-gpu / arm-gpu / arm-npu
v5Lite-g-int8.engine|8.5m|Repvgg-yolov5|v5Liteg-head|Tensorrt|x86-gpu / arm-gpu / arm-npu
v5lite-g-int8.tmfile|8.7m|Repvgg-yolov5|v5Liteg-head|Tengine| arm-npu
v5Lite-g-640.onnx|21m|Repvgg-yolov5|yolov5-head|onnxruntime|x86-cpu
v5Lite-g-640.joint|7.1m|Repvgg-yolov5|yolov5-head|axpi|arm-npu#### Download Link๏ผ
> - [ ] `v5lite-e.pt`: | [Baidu Drive](https://pan.baidu.com/s/1bjXo7KIFkOnB3pxixHeMPQ) | [Google Drive](https://drive.google.com/file/d/1_DvT_qjznuE-ev_pDdGKwRV3MjZ3Zos8/view?usp=sharing) |
>> |โโโโโโ`ncnn-fp16`: | [Baidu Drive](https://pan.baidu.com/s/1_QvWvkhHB7kdcRZ6k4at1g) | [Google Drive](https://drive.google.com/drive/folders/1w4mThJmqjhT1deIXMQAQ5xjWI3JNyzUl?usp=sharing) |
>> |โโโโโโ`ncnn-int8`: | [Baidu Drive](https://pan.baidu.com/s/1JO8qbbVx6zJ-6aq5EgM6PA) | [Google Drive](https://drive.google.com/drive/folders/1YNtNVWlRqN8Dwc_9AtRkN0LFkDeJ92gN?usp=sharing) |
>> |โโโโโโ`mnn-e_bf16`: | [Google Drive](https://drive.google.com/file/d/1_yGGCJFat2bjaKEwxJjrFcU2mGEhH8I3/view?usp=sharing) |
>> |โโโโโโ`mnn-d_bf16`: | [Google Drive](https://drive.google.com/file/d/1TqijmdQtWd6ZUr2CiNLuHCEQnPUw1oVu/view?usp=sharing)|
>> โโโโโโโ`onnx-fp32`: | [Baidu Drive](https://pan.baidu.com/s/1zIqKmOavRIrV8UJxbQWvhA) | [Google Drive](https://drive.google.com/file/d/1ot9eNlFMqMEzt_FHf0SkDHj1fOprOnTU/view?usp=sharing) |
> - [ ] `v5lite-s.pt`: | [Baidu Drive](https://pan.baidu.com/s/1j0n0K1kqfv1Ouwa2QSnzCQ) | [Google Drive](https://drive.google.com/file/d/1ccLTmGB5AkKPjDOyxF3tW7JxGWemph9f/view?usp=sharing) |
>> |โโโโโโ`ncnn-fp16`: | [Baidu Drive](https://pan.baidu.com/s/1kWtwx1C0OTTxbwqJyIyXWg) | [Google Drive](https://drive.google.com/drive/folders/1w4mThJmqjhT1deIXMQAQ5xjWI3JNyzUl?usp=sharing) |
>> |โโโโโโ`ncnn-int8`: | [Baidu Drive](https://pan.baidu.com/s/1QX6-oNynrW-f3i0P0Hqe4w) | [Google Drive](https://drive.google.com/drive/folders/1YNtNVWlRqN8Dwc_9AtRkN0LFkDeJ92gN?usp=sharing) |
>> โโโโโโโ`tengine-fp32`: | [Baidu Drive](https://pan.baidu.com/s/123r630O8Fco7X59wFU1crA) | [Google Drive](https://drive.google.com/drive/folders/1VWmI2BC9MjH7BsrOz4VlSDVnZMXaxGOE?usp=sharing) |
> - [ ] `v5lite-c.pt`: [Baidu Drive](https://pan.baidu.com/s/1obs6uRB79m8e3uASVR6P1A) | [Google Drive](https://drive.google.com/file/d/1lHYRQKjqKCRXghUjwWkUB0HQ8ccKH6qa/view?usp=sharing) |
>> โโโโโโโ`openvino-fp16`: | [Baidu Drive](https://pan.baidu.com/s/18p8HAyGJdmo2hham250b4A) | [Google Drive](https://drive.google.com/drive/folders/1s4KPSC4B0shG0INmQ6kZuPLnlUKAATyv?usp=sharing) |
> - [ ] `v5lite-g.pt`: | [Baidu Drive](https://pan.baidu.com/s/14zdTiTMI_9yTBgKGbv9pQw) | [Google Drive](https://drive.google.com/file/d/1oftzqOREGqDCerf7DtD5BZp9YWELlkMe/view?usp=sharing) |
>> โโโโโโโ`axpi-int8`: [Google Drive](https://github.com/AXERA-TECH/ax-models/blob/main/ax620/v5Lite-g-sim-640.joint) |
Baidu Drive Password: `pogg`
#### v5lite-s model: TFLite Float32, Float16, INT8, Dynamic range quantization, ONNX, TFJS, TensorRT, OpenVINO IR FP32/FP16, Myriad Inference Engin Blob, CoreML
[https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite](https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite)#### Thanks for PINTO0309:[https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite](https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite)
##
How to useInstall
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ppogg/YOLOv5-Lite/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):```bash
$ git clone https://github.com/ppogg/YOLOv5-Lite
$ cd YOLOv5-Lite
$ pip install -r requirements.txt
```Inference with detect.py
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5-Lite release](https://github.com/ppogg/YOLOv5-Lite/releases) and saving results to `runs/detect`.```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```Training
```bash
$ python train.py --data coco.yaml --cfg v5lite-e.yaml --weights v5lite-e.pt --batch-size 128
v5lite-s.yaml v5lite-s.pt 128
v5lite-c.yaml v5lite-c.pt 96
v5lite-g.yaml v5lite-g.pt 64
```If you use multi-gpu. It's faster several times:
```bash
$ python -m torch.distributed.launch --nproc_per_node 2 train.py
```
DataSet
Training set and test set distribution ๏ผthe path with xx.jpg๏ผ
```bash
train: ../coco/images/train2017/
val: ../coco/images/val2017/
```
```bash
โโโ images # xx.jpg example
โ โโโ train2017
โ โ โโโ 000001.jpg
โ โ โโโ 000002.jpg
โ โ โโโ 000003.jpg
โ โโโ val2017
โ โโโ 100001.jpg
โ โโโ 100002.jpg
โ โโโ 100003.jpg
โโโ labels # xx.txt example
โโโ train2017
โ โโโ 000001.txt
โ โโโ 000002.txt
โ โโโ 000003.txt
โโโ val2017
โโโ 100001.txt
โโโ 100002.txt
โโโ 100003.txt
```
Auto LabelImg
[**Link** ๏ผhttps://github.com/ppogg/AutoLabelImg](https://github.com/ppogg/AutoLabelImg)
You can use LabelImg based YOLOv5-5.0 and YOLOv5-Lite to AutoAnnotate, biubiubiu ๐ ๐ ๐
Model Hub
Here, the original components of YOLOv5 and the reproduced components of YOLOv5-Lite are organized and stored in the [model hub](https://github.com/ppogg/YOLOv5-Lite/tree/master/models/hub)๏ผ
![modelhub](https://user-images.githubusercontent.com/82716366/146787562-e2c1c4c1-726e-4efc-9eae-d92f34333e8d.jpg)
Heatmap Analysis
```bash
$ python main.py --type all
```
![่ฎบๆๆๅพ2](https://user-images.githubusercontent.com/82716366/167449474-3689c2bf-197a-4403-849c-b85db6bcc476.png)Updating ...
## How to deploy
[**ncnn**](https://github.com/ppogg/YOLOv5-Lite/blob/master/cpp_demo/ncnn/README.md) for arm-cpu
[**mnn**](https://github.com/ppogg/YOLOv5-Lite/blob/master/cpp_demo/mnn/README.md) for arm-cpu
[**openvino**](https://github.com/ppogg/YOLOv5-Lite/blob/master/python_demo/openvino/README.md) x86-cpu or x86-vpu
[**tensorrt(C++)**](https://github.com/ppogg/YOLOv5-Lite/blob/master/cpp_demo/tensorrt/README.md) for arm-gpu or arm-npu or x86-gpu
[**tensorrt(Python)**](https://github.com/ppogg/YOLOv5-Lite/tree/master/python_demo/tensorrt) for arm-gpu or arm-npu or x86-gpu
[**Android**](https://github.com/ppogg/YOLOv5-Lite/blob/master/android_demo/ncnn-android-v5lite/README.md) for arm-cpu
## Android_demo
This is a Redmi phone, the processor is Snapdragon 730G, and yolov5-lite is used for detection. The performance is as follows:
link: https://github.com/ppogg/YOLOv5-Lite/tree/master/android_demo/ncnn-android-v5lite
Android_v5Lite-s: https://drive.google.com/file/d/1CtohY68N2B9XYuqFLiTp-Nd2kuFWgAUR/view?usp=sharing
Android_v5Lite-g: https://drive.google.com/file/d/1FnvkWxxP_aZwhi000xjIuhJ_OhqOUJcj/view?usp=sharing
new android app:[link] https://pan.baidu.com/s/1PRhW4fI1jq8VboPyishcIQ [keyword] pogg
## More detailed explanation
#### Detailed model link:
What is YOLOv5-Lite S/E model:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/400545131](https://zhuanlan.zhihu.com/p/400545131)
What is YOLOv5-Lite C model:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/420737659](https://zhuanlan.zhihu.com/p/420737659)What is YOLOv5-Lite G model:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/410874403](https://zhuanlan.zhihu.com/p/410874403)
How to deploy on ncnn with fp16 or int8:
csdn link (Chinese): [https://blog.csdn.net/weixin_45829462/article/details/119787840](https://blog.csdn.net/weixin_45829462/article/details/119787840)How to deploy on mnn with fp16 or int8:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/672633849](https://zhuanlan.zhihu.com/p/672633849)
How to deploy on onnxruntime:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/476533259](https://zhuanlan.zhihu.com/p/476533259)(old version)
How to deploy on tensorrt:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/478630138](https://zhuanlan.zhihu.com/p/478630138)
How to optimize on tensorrt:
zhihu link (Chinese): [https://zhuanlan.zhihu.com/p/463074494](https://zhuanlan.zhihu.com/p/463074494)## Reference
https://github.com/ultralytics/yolov5
https://github.com/megvii-model/ShuffleNet-Series
https://github.com/Tencent/ncnn
## Citing YOLOv5-Lite
If you use YOLOv5-Lite in your research, please cite our work and give a star โญ:```
@misc{yolov5lite2021,
title = {YOLOv5-Lite: Lighter, faster and easier to deploy},
author = {Xiangrong Chen and Ziman Gong},
doi = {10.5281/zenodo.5241425}
year={2021}
}
```