An open API service indexing awesome lists of open source software.

https://github.com/praatibhsurana/digitgan

Implementing a Generative Adversarial Network using Keras.
https://github.com/praatibhsurana/digitgan

deep-learning gan keras neural-networks python

Last synced: about 2 months ago
JSON representation

Implementing a Generative Adversarial Network using Keras.

Awesome Lists containing this project

README

          

# DigitGAN
Keras implementation of a simple General Adversarial Network (GAN) to generate digits.
The mnist dataset was used.

## Setup

**Clone the repo and navigate to it**
```bash
git clone https://github.com/praatibhsurana/DigitGAN.git
cd DigitGAN-master
```

**To run the model**
- Download [pip](https://pip.pypa.io/en/stable/installing/)
- Download [python 3](https://www.python.org/downloads/)
- Create and activate your virtual environment
- From the root directory run:
```bash
pip install -r requirements.txt
```
- You should be good to go now! Now, from within the virtual environment you created, run:
```bash
python DigitGAN.py
```
The quality of generated images can be improved by running for a higher number of epochs.

## Results obtained from various epochs-

### Epoch 1
![1](https://github.com/praatibhsurana/DigitGAN/blob/master/Generator_Checkpoints/gan_generated_image_epoch_1.png?raw=true)

### Epoch 10
![2](https://github.com/praatibhsurana/DigitGAN/blob/master/Generator_Checkpoints/gan_generated_image_epoch_10.png?raw=true)

### Epoch 20
![3](https://github.com/praatibhsurana/DigitGAN/blob/master/Generator_Checkpoints/gan_generated_image_epoch_20.png?raw=true)

### Epoch 30
![4](https://github.com/praatibhsurana/DigitGAN/blob/master/Generator_Checkpoints/gan_generated_image_epoch_30.png?raw=true)

### Epoch 40
![5](https://github.com/praatibhsurana/DigitGAN/blob/master/Generator_Checkpoints/gan_generated_image_epoch_40.png?raw=true)

### Epoch 50
![6](https://github.com/praatibhsurana/DigitGAN/blob/master/Generator_Checkpoints/gan_generated_image_epoch_50.png?raw=true)