An open API service indexing awesome lists of open source software.

https://github.com/prachi005748/website-performance-data-analysis-project

Briefly describe the objective of the project—e.g., analyzing website performance metrics over time, uncovering trends in user engagement, or evaluating channel-wise traffic quality.
https://github.com/prachi005748/website-performance-data-analysis-project

data-analyst data-cleaning data-preprocessing data-visualization data-visualization-python exploratory-data-analysis jupyter-notebook matplotlib numpy pandas python seaborn storytelling

Last synced: 3 months ago
JSON representation

Briefly describe the objective of the project—e.g., analyzing website performance metrics over time, uncovering trends in user engagement, or evaluating channel-wise traffic quality.

Awesome Lists containing this project

README

          

# 🌐 Website Performance Data Analysis Project

![Python](https://img.shields.io/badge/Python-3.8%2B-blue)
![Jupyter](https://img.shields.io/badge/Jupyter-Notebook-orange)
![License](https://img.shields.io/badge/License-MIT-green)

---

## 📑 Table of Contents
1. [📌 Project Overview](#-project-overview)
2. [📊 Dataset](#-dataset)
3. [🛠️ Technologies Used](#️-technologies-used)
4. [🔍 Project Workflow](#-project-workflow)
5. [🚀 How to Run the Project](#-how-to-run-the-project)
6. [📈 Key Outcomes](#-key-outcomes)
7. [🤝 Acknowledgments](#-acknowledgments)

---

## 📌 Project Overview
This project analyzes **website performance metrics** to uncover insights about user engagement, traffic behavior, and performance trends.

Using Python and visualization tools, the notebook provides:
✅ Traffic trend analysis
✅ Engagement behavior insights
✅ Channel performance comparisons
✅ Data-driven recommendations

---

## 📊 Dataset
- **Source**: Website analytics export (Google Analytics or similar)
- **Main Features**:
- 📅 Date/Time of visit
- 👥 Users & Sessions
- ⏱️ Average Engagement Time
- 🎯 Events per Session
- 📊 Engagement / Bounce Rate
- 🌍 Traffic Source (Organic, Paid, Referral, etc.)
- **Size**: Multiple months of traffic data

---

## 🛠️ Technologies Used
- **Programming Language**: Python 🐍
- **Environment**: Jupyter Notebook 📓
- **Libraries**:
- `pandas` → Data cleaning & manipulation
- `numpy` → Numerical computations
- `matplotlib` & `seaborn` → Data visualization
- `plotly` → Interactive plots

---

## 🔍 Project Workflow
1. 📂 **Data Loading & Cleaning**
- Import data, handle missing values, format columns

2. 📊 **Exploratory Data Analysis (EDA)**
- Summary statistics, detect traffic patterns & anomalies

3. ⚙️ **Feature Engineering**
- Derived metrics (e.g., session duration/user, engagement ratios)

4. 📉 **Data Visualization**
- Time-based trends, channel comparisons, engagement metrics

5. 💡 **Insights & Recommendations**
- Identify peak usage hours, best-performing channels, improvement strategies

---

## 🚀 How to Run the Project
1. Clone the repository:
```bash
git clone https://github.com/Prachi005748/Website-Performance-Data-Analysis-Project.git
```
2.Navigate into the folder:
```bash
cd Website-Performance-Data-Analysis-Project
```

3.Install dependencies:
```bash
pip install pandas numpy matplotlib seaborn plotly
```

4.Launch Jupyter Notebook:
```bash
jupyter notebook
```

5.Open and run:
```bash
Website performance analysis project.ipynb
```

---

## 📈 Key Outcomes
- Identified traffic trends and engagement patterns
- Highlighted high-performing vs. low-performing channels
- Generated data-driven recommendations for website optimization

## 🤝 Acknowledgments
- Dataset inspired by website analytics reports
- Thanks to the Python Data Analysis Community 🙌
```bash
git clone https://github.com/Prachi005748/Website-Performance-Data-Analysis-Project.git
```

## 📬 Contact

If you have any questions, suggestions, or feedback, feel free to reach out:

- *Name*: Prachi Paliwal
- *Gmail*: prachipaliwal745@gmail.com
- *GitHub*: [Prachi005748](https://github.com/Prachi005748)
- *LinkedIn*: [Prachi Paliwal](https://www.linkedin.com/in/prachi-paliwal-799126268/)