https://github.com/prcharan592/social-media-sentiment-analysis
Social media sentiment analysis using tweets involves analyzing tweet data to determine public sentiment (positive, negative, or neutral) using natural language processing (NLP) and machine learning techniques.
https://github.com/prcharan592/social-media-sentiment-analysis
data-visualization machine-learning matplotlib nlp nltk numpy pandas python3 sentiment-analysis spacy tweets
Last synced: about 1 month ago
JSON representation
Social media sentiment analysis using tweets involves analyzing tweet data to determine public sentiment (positive, negative, or neutral) using natural language processing (NLP) and machine learning techniques.
- Host: GitHub
- URL: https://github.com/prcharan592/social-media-sentiment-analysis
- Owner: prcharan592
- Created: 2025-02-15T08:05:38.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2025-02-15T08:11:49.000Z (3 months ago)
- Last Synced: 2025-02-15T09:18:51.171Z (3 months ago)
- Topics: data-visualization, machine-learning, matplotlib, nlp, nltk, numpy, pandas, python3, sentiment-analysis, spacy, tweets
- Language: Jupyter Notebook
- Homepage:
- Size: 1.77 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Social-Media-Sentiment-Analysis
Social media sentiment analysis using tweets involves analyzing tweet data to determine public sentiment (positive, negative, or neutral) using natural language processing (NLP) and machine learning techniques.# Link for dataset https://www.kaggle.com/datasets/ferno2/training1600000processednoemoticoncsv
# 📌 Overview
This project analyzes Twitter data to determine sentiment (Positive, Negative, or Neutral) using NLP and machine learning techniques.
# 🚀 Features
•Collects tweets using Twitte dataset
•Preprocesses text (tokenization, stopword removal, stemming)
•Applies sentiment classification using ML models (Logistic Regression, SVM, or Deep Learning)
•Visualizes sentiment trends with graphs and charts# 🛠️ Tech Stack
•Python
•NLP (NLTK, SpaCy)
•Machine Learning (Scikit-learn, TensorFlow)
•Data Processing (Pandas, NumPy)
•Data Visualization (Matplotlib, Seaborn)# 📊 Results & Insights
•Sentiment distribution of tweets
•Word cloud for positive and negative sentiments
•Time-based sentiment trends
# đź”§ Setup Instructions
# git clone https://github.com/your-repo/sentiment-analysis.git
# cd sentiment-analysisFeel free to contribute by submitting issues or pull requests.