Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/prem07a/automl
A Streamlit app for automated data cleaning, feature selection, and model training. Easily manage machine learning tasks with a user-friendly interface.
https://github.com/prem07a/automl
automation llm machine-learning openai
Last synced: 23 days ago
JSON representation
A Streamlit app for automated data cleaning, feature selection, and model training. Easily manage machine learning tasks with a user-friendly interface.
- Host: GitHub
- URL: https://github.com/prem07a/automl
- Owner: Prem07a
- License: mit
- Created: 2024-07-27T02:18:27.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-07-27T13:56:28.000Z (5 months ago)
- Last Synced: 2024-07-28T15:08:11.672Z (5 months ago)
- Topics: automation, llm, machine-learning, openai
- Language: Python
- Homepage:
- Size: 1.16 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## Project Documentation
### 1. Folder Structure
```
src/
│
├── images/
│ ├── favicon.ico
│ ├── logo.png
│ ├── HomePage.png
│ ├── HomePage2.png
│ ├── Automl.png
│ ├── transform.png
│ ├── explore.png
│ └── openProject.png
│
├── project/
│ └── [Project Name]/
│ ├── data/
│ ├── models/
│ ├── report/
│ └── code/
│
├── src/
│ ├── app.py
│ ├── automl.py
│ ├── explore.py
│ ├── transform.py
│ └── prompt.py
│
├── .env
├── requirements.txt
├── LICENSE
└── README.md
```### 2. `.env` File
The `.env` file should be placed in the root of your project directory (`src`) and contain environment variables used by your application. For example:
```env
OPENAI_API_KEY=your_openai_api_key_here
```Replace `your_openai_api_key_here` with your actual OpenAI API key.
### 3. `requirements.txt`
The `requirements.txt` file lists all Python packages your project depends on. Here’s an example based on your provided code:
```txt
# Application
streamlit
llama-index-llms-openai
python-dotenv
pandasai# Data manipulation
pandas
numpy# Machine learning
scikit-learn
xgboost
lightgbm
catboost# Statistics
scipy# Plotting
matplotlib
seaborn# For running the code
joblib
```### 4. Running Steps
#### **1. Clone the Git Repository**
Start by cloning your Git repository to your local machine:
```bash
git clone https://github.com/Prem07a/AutoML.git
cd AutoML
```#### **2. Create and Activate a Virtual Environment**
For macOS and Linux:
```bash
python3 -m venv venv
source venv/bin/activate
```For Windows:
```bash
python -m venv venv
venv\Scripts\activate
```This step creates a virtual environment and activates it to ensure that dependencies are installed in an isolated environment.
#### **3. Install the Required Packages**
With the virtual environment activated, install the necessary Python packages listed in `requirements.txt`:
```bash
pip install -r requirements.txt
```This command installs all the dependencies required for your project.
*Note: If you encounter issues installing `pandasai`, try using Python 3.11.9*
#### **4. Run Your Streamlit App**
After setting up the environment and installing dependencies, you can start your Streamlit app. Navigate to the `src` directory and run:
```bash
streamlit run app.py
```This command launches the Streamlit server and opens your app in the default web browser.
### 5. Project Screenshots
Here are some screenshots of the different pages in the application:
#### **Home Page**
![Home Page](images/HomePage.png)
#### **Home Page 2**
![Home Page 2](images/HomePage2.png)
#### **AutoML Page**
![AutoML](images/Automl.png)
#### **Transform Page**
![Transform](images/transform.png)
#### **Explore Page**
![Explore](images/explore.png)
#### **Open Project Page**
![Open Project](images/openProject.png)
## License
This project is licensed under the MIT License - see the [LICENSE](./LICENSE) file for details.
#### Copyright (c) 2024 Prem Gaikwad