Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/priba/nmp_qc
Our own implementation of Neural Message Passing for Computer Vision paper
https://github.com/priba/nmp_qc
Last synced: 3 months ago
JSON representation
Our own implementation of Neural Message Passing for Computer Vision paper
- Host: GitHub
- URL: https://github.com/priba/nmp_qc
- Owner: priba
- License: mit
- Created: 2017-04-19T19:10:59.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2020-05-05T11:06:49.000Z (over 4 years ago)
- Last Synced: 2024-08-02T06:19:32.645Z (6 months ago)
- Language: Python
- Homepage:
- Size: 201 KB
- Stars: 333
- Watchers: 16
- Forks: 82
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-pytorch - Neural Message Passing
- awesome-pytorch - Neural Message Passing
README
# Neural Message Passing for Quantum Chemistry
Implementation of different models of Neural Networks on graphs as explained in the article proposed by Gilmer *et al.* [1].
## Installation
$ pip install -r requirements.txt
$ python main.py
## Installation of rdkitRunning any experiment using QM9 dataset needs installing the [rdkit](http://www.rdkit.org/) package, which can be done
following the instructions available [here](http://www.rdkit.org/docs/Install.html)## Data
The data used in this project can be downloaded [here](https://github.com/priba/nmp_qc/tree/master/data).
## Bibliography
- [1] Gilmer *et al.*, [Neural Message Passing for Quantum Chemistry](https://arxiv.org/pdf/1704.01212.pdf), arXiv, 2017.
- [2] Duvenaud *et al.*, [Convolutional Networks on Graphs for Learning Molecular Fingerprints](https://arxiv.org/abs/1606.09375), NIPS, 2015.
- [3] Li *et al.*, [Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493), ICLR, 2016.
- [4] Battaglia *et al.*, [Interaction Networks for Learning about Objects](https://arxiv.org/abs/1612.00222), NIPS, 2016.
- [5] Kipf *et al.*, [Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/abs/1609.02907), ICLR, 2017
- [6] Defferrard *et al.*, [Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering](https://arxiv.org/abs/1606.09375), NIPS, 2016.
- [7] Kearnes *et al.*, [Molecular Graph Convolutions: Moving Beyond Fingerprints](https://arxiv.org/abs/1603.00856), JCAMD, 2016.
- [8] Bruna *et al.*, [Spectral Networks and Locally Connected Networks on Graphs](https://arxiv.org/abs/1312.6203), ICLR, 2014.
## Cite
```
@Article{Gilmer2017,
author = {Justin Gilmer and Samuel S. Schoenholz and Patrick F. Riley and Oriol Vinyals and George E. Dahl},
title = {Neural Message Passing for Quantum Chemistry},
journal = {CoRR},
year = {2017}
}
```## Authors
* Pau Riba (@priba) [Webpage](http://www.cvc.uab.es/people/priba/)
* Anjan Dutta (@AnjanDutta) [Webpage](https://sites.google.com/site/2adutta/)