Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/prodbygodfather/py2proto

py2proto is a powerful Python library that simplifies the process of creating gRPC services and Protocol Buffer definitions. It automatically generates .proto files, gRPC code, and Swagger UI documentation from Python class definitions.
https://github.com/prodbygodfather/py2proto

grpc-swagger orm proto-swagger protobuf protobuf-orm protobuf-swagger py2proto swagger

Last synced: 2 months ago
JSON representation

py2proto is a powerful Python library that simplifies the process of creating gRPC services and Protocol Buffer definitions. It automatically generates .proto files, gRPC code, and Swagger UI documentation from Python class definitions.

Awesome Lists containing this project

README

        

# py2proto

py2proto is a powerful Python library that simplifies the process of creating gRPC services and Protocol Buffer definitions. It automatically generates .proto files, gRPC code, and Swagger UI documentation from Python class definitions.

## Features

- Automatic generation of .proto files from Python classes
- Generation of gRPC Python code
- Swagger UI generation for easy API testing and documentation
- Support for complex data types (lists, dictionaries)
- Custom output directory setting
- Built-in Swagger UI server
- Creating server and client codes for Python and JavaScript programming languages.

## Installation

Install py2proto using pip:

```bash
pip install py2proto
```

## Usage

1. Import necessary modules:

```python
from py2proto import ProtoGenerator, relation
from typing import List, Dict
```
2. Define your message classes:
```python
class MessageProto(ProtoGenerator):
class MessageRequest(ProtoGenerator):
message: str
number: int

class MessageResponse(ProtoGenerator):
message: str

# relation(`relation Name`, `request function`, `returnes fucntion`)
service = relation("SendMessage", "MessageRequest", "MessageResponse")
```
3. Generate files and run Swagger UI:
```python
if __name__ == "__main__":
# Set output directory
MessageProto.set_output_directory("outputs")

# Generate proto file
proto_file = MessageProto.generate_proto("messageservice", "message_service")

# Generate pb2 files
MessageProto.generate_pb2(proto_file)

# Generate Swagger file
swagger_file = MessageProto.generate_swagger(proto_file)

# Generate gRPC server & client files for Python and JavaScript
MessageProto.generate_grpc_files(['python', 'javascript'], proto_file, port=50051)

# Run Swagger UI
MessageProto.run_flask()

```

This script will generate a .proto file in the 'protos/' directory and pb2 files in the 'outputs/' directory.
Finally, the output of the generated proto file will be as follows:

## Detailed Function Explanations

### relation(method_name: str, request: str, response: str)
Defines a gRPC service method with its request and response types.

Example:
```python
service = relation("SendMessage", "MessageRequest", "MessageResponse")
```

### set_output_directory(directory: str)
Sets the output directory for generated files.

Example:
```python
MessageProto.set_output_directory("custom_output")
```

### generate_proto(package_name: str, file_name: str) -> str
Generates a .proto file based on the defined classes.

Example:
```python
proto_file = MessageProto.generate_proto("mypackage", "myservice")
```

### generate_pb2(proto_file: str)
Generates Python gRPC code from the .proto file.

Example:
```python
MessageProto.generate_pb2(proto_file)
```

### generate_swagger(proto_file: str) -> str
Generates a Swagger JSON file for API documentation.

Example:
```python
swagger_file = MessageProto.generate_swagger(proto_file)
```

### run_swagger()
Starts a Flask server to serve the Swagger UI.

Example:
```python
MessageProto.run_swagger()
```

### generate_grpc_files(languages: List[str], proto_file: str, port: int = 50051)
Generates gRPC code for the specified languages.

Example:
```python
MessageProto.generate_grpc_files(['python', 'javascript'], proto_file, port=50051)
```

## Advanced Usage
You can use complex data types in your message definitions:
```python
class ComplexProto(ProtoGenerator):
class ComplexRequest(ProtoGenerator):
list_field: List[str]
dict_field: Dict[str, int]

class ComplexResponse(ProtoGenerator):
result: List[Dict[str, str]]

service = relation("ComplexRequest", "ComplexResponse")
```

## Multiple Services
Define multiple services in a single Proto class:
```python
class MultiServiceProto(ProtoGenerator):
class Request1(ProtoGenerator):
field1: str

class Response1(ProtoGenerator):
result1: str

class Request2(ProtoGenerator):
field2: int

class Response2(ProtoGenerator):
result2: int

service1 = relation("Request1", "Response1")
service2 = relation("Request2", "Response2")
```

## Why Use py2proto?
1. Simplicity: Define your gRPC services using familiar Python syntax.
2. Automation: Automatically generate .proto files and gRPC code.
3. Documentation: Get Swagger UI documentation out of the box.
4. Flexibility: Support for complex data types and multiple services.
5. Time-saving: Reduce boilerplate code and manual proto file writing.

## Requirements

- Python 3.6+
- grpcio
- grpcio-tools
- Flask (for Swagger UI)

## Supported Data Types

py2proto supports the following Protocol Buffer data types:

- str `(string)`
- int `(int32)`
- float `(float)`
- bool `(bool)`
- bytes `(bytes)`
- "int64" `(int64)`
- "uint32" `(uint32)`
- "uint64" `(uint64)`
- "sint32" `(sint32)`
- "sint64" `(sint64)`
- "fixed32" `(fixed32)`
- "fixed64" `(fixed64)`
- "sfixed32" `(sfixed32)`
- "sfixed64" `(sfixed64)`
- "double" `(double)`
- List[Type] `(repeated)`
- Dict[KeyType, ValueType] `(map)`

## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.