Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/progamergov/neural-tools

Tools made for usage alongside artistic style transfer projects
https://github.com/progamergov/neural-tools

coarse color color-transfer controlling factors fine grayscale-images linear-color-transfer luminance luminance-transfer neural neural-style neural-style-pt perceptual scale scale-control style style-transfer tools transfer

Last synced: 12 days ago
JSON representation

Tools made for usage alongside artistic style transfer projects

Awesome Lists containing this project

README

        

# Neural-Tools
Tools made for usage alongside artistic style transfer projects based on the [Controlling Perceptual Factors in Neural Style Transfer](https://arxiv.org/abs/1611.07865) research paper by Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman.

**In-depth information about how to perform Scale Control and Color Control, including the Neural-Style parameters used in the examples, can be found on the [wiki](https://github.com/ProGamerGov/Neural-Tools/wiki).** The Color Control feature is broken down into two different features known as Luminance-Only Style Transfer, and Color Matching. The Scale Control feature focuses on separating style image content/shapes, and style image textures.

# Linear Color Transfer

The `match_color` function's code comes from the very talented Leon Gatys' code [here](https://github.com/leongatys/NeuralImageSynthesis/blob/master/ExampleNotebooks/ScaleControl.ipynb). This script was developed to help enable Scale Control in [Neural-Style](https://github.com/jcjohnson/neural-style), but it can be used for anything else that requires linear color transfer. Supported image formats include: `jpg`, `jpeg`, `png`, `tiff`, etc...

Scale Control examples made with [Neural-Style](https://github.com/jcjohnson/neural-style), can be viewed [here](https://github.com/ProGamerGov/Neural-Tools/wiki/Scale-Control-Examples).

### Dependencies:

`sudo pip install scikit-image`

`sudo pip install imageio`

`sudo pip install numpy`

`sudo pip install scipy`

### Usage:

Basic usage:

```
python linear-color-transfer.py --target_image target.png --source_image source.png
```

Advanced usage:

```
python linear-color-transfer.py --target_image target.png --source_image source.png --output_image output.png --mode pca --eps 1e-5
```

### Parameters:

* `--target_image`: The image you are transfering color to. Ex: `target.png`

* `--source_image`: The image you are transfering color from. Ex: `source.png`

* `--output_image`: The name of your output image. Ex: `output.png`

* `--mode`: The color transfer mode. Options are `pca`, `chol`, or `sym`.

* `--eps`: Your epsilon value in scientific notation or normal notation. Ex: `1e-5` or `0.00001`.

### Examples:

**Source Image:**

![](https://i.imgur.com/eoX7f3Il.jpg)

**Target Image:**

![](https://i.imgur.com/7FPCSril.jpg)

**Output Image:**

![](https://i.imgur.com/STZ0Mspl.png)

**[See here for how to use this script for Scale Control](https://github.com/ProGamerGov/Neural-Tools/wiki/Scale-Control-Examples)**.

![](https://i.imgur.com/fsqGmJfl.png)

### Linear Color Transfer is also used for Color Matching Style Transfer:

![](https://i.imgur.com/6xf5c9yl.jpg)

See [here on the wiki](https://github.com/ProGamerGov/Neural-Tools/wiki/Color-Matching), for more details on Color Matching Style Transfer.

---

---

# Luminance Transfer

This script was developed to help enable colour control in [Neural-Style](https://github.com/jcjohnson/neural-style), also known as "Luminance Transfer". This script uses code from Leon Gatys' code [here](https://github.com/leongatys/NeuralImageSynthesis/blob/master/ExampleNotebooks/ColourControl.ipynb). Supported image formats include: `jpg`, `jpeg`, `png`, `tiff`, etc...

Luminance transfer/Color Control examples made with [Neural-Style](https://github.com/jcjohnson/neural-style), can be found [here](https://github.com/ProGamerGov/Neural-Tools/wiki/Color-Control-Examples).

### How It Works:

Currently, all available models are trained on images with the RGB/BGR color space. An image's luminance can represented in the form of gray scale color space image, which can be converted to RGB format for Neural-Style. After the gray scale images are run through Neural-Style, re-applying the color to your output is done with the use of the LUV color space.

Basically due to pre-trained model limitations, gray scale images are used to transfer luminance, and a color space supporting luminance is used to transfer the colors back to the finished output.

### Dependencies:

`sudo pip install scikit-image`

`sudo pip install imageio`

`sudo pip install numpy`

`sudo pip install scipy`

### Usage:

Basic usage:

```
python lum-transfer.py --content_image content.png --style_image style.png
```

Advanced usage:

```
python lum-transfer.py --cp_mode lum --content_image content.png --style_image style.png --org_content content.png --output_style_image output_style.png --output_content_image output_content.png
```

### Parameters:

The required input images and the output images, are dependent on the `--cp_mode` option that you choose:

* `--cp_mode`: The script's mode. Options are `lum`, `lum2`, `match`, `match_style`.

**Mode: `lum`**

* `--content_image`: Your content image. Ex: `content.png`

* `--style_image`: Your style image. Ex: `style.png`

* `--org_content`: Your original unmodified content image. Ex: `original_content.png`

* `--output_content_image`: The name of your output content image. Ex: `content_output.png`

* `--output_style_image`: The name of your output style image. Ex: `style_output.png`

**Mode: `match`**

* `--content_image`: Your content image. Ex: `content.png`

* `--style_image`: Your style image. Ex: `style.png`

* `--output_style_image`: The name of your output style image. Ex: `style_output.png`

**Mode: `match_style`**

* `--content_image`: Your content image. Ex: `content.png`

* `--style_image`: Your style image. Ex: `style.png`

* `--output_content_image`: The name of your output content image. Ex: `content_output.png`

**Mode: `lum2`**

* `--output_lum2`: The name of your output image from Neural-Style. Ex: `out.png`

* `--org_content`: Your original unmodified content image. Ex: `original_content.png`

* `--output_image`: The name of your output image. Ex: `output.png`

### Examples:

**The style image is adjusted to match the content image:**

![](https://i.imgur.com/Q7phTmel.png)

![](https://i.imgur.com/dRf3yZHl.png)

**After Neural-Style:**

![](https://i.imgur.com/hpW8zufl.png)

**Final ouput image:**

![](https://i.imgur.com/o5HDDtDl.png)

---