Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ptsochantaris/emeltal
Local ML voice chat using high-end models.
https://github.com/ptsochantaris/emeltal
ai llama-cpp machine-learning macos ml natural-language-processing speech-recognition swift swiftui user-interface whisper-cpp
Last synced: 4 days ago
JSON representation
Local ML voice chat using high-end models.
- Host: GitHub
- URL: https://github.com/ptsochantaris/emeltal
- Owner: ptsochantaris
- License: mit
- Created: 2023-12-17T14:18:07.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-11-03T13:39:45.000Z (8 days ago)
- Last Synced: 2024-11-03T14:27:31.369Z (8 days ago)
- Topics: ai, llama-cpp, machine-learning, macos, ml, natural-language-processing, speech-recognition, swift, swiftui, user-interface, whisper-cpp
- Language: C++
- Homepage:
- Size: 47.8 MB
- Stars: 142
- Watchers: 3
- Forks: 8
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-local-llms - emeltal - end models. | 142 | 8 | 1 | 1 | 0 | MIT License | 5 days, 5 hrs, 5 mins | (Open-Source Local LLM Projects)
README
Emeltal
====_The wise cheese_
Local ML voice chat using high-end models, aiming for a self contained, user-friendly out-of-the-box experience as much as possible.
This is a work in progress with frequent updates; [TestFlight builds are available here](https://testflight.apple.com/join/NTIomxyk) for macOS, iOS and visionOS.
|Selection|Full|Mini|
|---------|----|----|
||||## Emellink
A light helper app which can run on an iPhone or device with not enough processing power, which automatically detects and connects to Emeltal on the network and provides the same voice interface. [Testflight link for this app is here](https://testflight.apple.com/join/s0EYVO5P)
## Currently supported models
Emeltal offers a curated list of proven open-source high-performance models, aiming to provide the best model for each category/size combination. This list often changes as new models become available, or others are superceeded by much better performing ones. Most models (with the exception of certain extremely large variants, which are capped at 16384 tokens) run at their maximum context size.
#### Qwen Series
- [Qwen 2.5 72b] (https://huggingface.co/bartowski/Qwen2.5-72B-Instruct-GGUF)
- [Qwen 2.5 32b] (https://huggingface.co/bartowski/Qwen2.5-32B-Instruct-GGUF)
- [Qwen 2.5 14b] (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-GGUF)
- [Qwen 2.5 7b] (https://huggingface.co/bartowski/Qwen2.5-7B-Instruct-GGUF)#### Dolphin Series
- [Dolphin 2.9.2 on Qwen 2.5](https://huggingface.co/mradermacher/dolphin-2.9.2-qwen2-72b-i1-GGUF)
- [Dolphin 2.7 on Mixtral](https://huggingface.co/cognitivecomputations/dolphin-2.7-mixtral-8x7b)
- [Dolphin 2.9.3 on Mistral Nemo](https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b-gguf)
- [Dolphin 2.8.1 on TinyLlama](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8-1.1b)#### Samantha Series
- [Samantha 1.11 70b](https://huggingface.co/cognitivecomputations/Samantha-1.11-70b)
- [Samantha 1.1 7b](https://huggingface.co/cognitivecomputations/samantha-1.1-westlake-7b)#### Llama Series
- [Llama 3.1 70b](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct)
- [Llama 3.1 8b](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
- [Llama 3.2 3b](https://huggingface.co/meta-llama/Meta-Llama-3.2-8B-Instruct)
- [Llama 3.2 1b](https://huggingface.co/meta-llama/Meta-Llama-3.2-8B-Instruct)#### Coding
- [Dolphin Coder](https://huggingface.co/cognitivecomputations/dolphincoder-starcoder2-15b)
- [Deepseek Coder 33b](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct)
- [Deepseek Coder 7b](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5)
- [Everyone Coder](https://huggingface.co/rombodawg/Everyone-Coder-33b-v2-Base)
- [CodeLlama 70b](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf)
- [Codestral](https://huggingface.co/mistralai/Codestral-22B-v0.1)#### Creative
- [MythoMax 13b](https://huggingface.co/Gryphe/MythoMax-L2-13b)
- [Neural Story](https://huggingface.co/NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story)#### Other
- [Supernova Medius](https://huggingface.co/arcee-ai/SuperNova-Medius)
- [Shuttle 3](https://huggingface.co/shuttleai/shuttle-3)
- [SmolLM 2](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct)#### Voice Recognition
- [Whisper](https://huggingface.co/ggerganov/whisper.cpp)## Packages
- Emeltal heavily relies on the [llama.cpp](https://github.com/ggerganov/llama.cpp) for LLM processing, and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) for voice recognition.
- Text rendering uses [Ink](https://github.com/JohnSundell/Ink) to convert between Markdown and HTML.
- Uses my [PopTimer](https://github.com/ptsochantaris/pop-timer) for debouncing things.## License
Released under the terms of the MIT license, see the [LICENSE](LICENSE.txt) file for license rights and limitations (MIT).
All model data which is downloaded locally by the app comes from HuggingFace, and use of the models and data is subject to the respective license of each specific model.
## Copyright
Copyright (c) 2023-2024 Paul Tsochantaris