https://github.com/pvnieo/beating-atari
Implementation of RL algorithms to beat Atari 2600 games
https://github.com/pvnieo/beating-atari
atari double-dqn dqn pytorch reinforcement-learning rl-algorithms
Last synced: about 2 months ago
JSON representation
Implementation of RL algorithms to beat Atari 2600 games
- Host: GitHub
- URL: https://github.com/pvnieo/beating-atari
- Owner: pvnieo
- License: apache-2.0
- Created: 2019-01-12T12:09:26.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-09-08T22:19:11.000Z (over 5 years ago)
- Last Synced: 2025-02-15T11:23:20.199Z (4 months ago)
- Topics: atari, double-dqn, dqn, pytorch, reinforcement-learning, rl-algorithms
- Language: Python
- Homepage:
- Size: 569 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# beating-atari
Modularized implementation of popular deep RL algorithms in PyTorch to beat Atari 2600 games. Easy switch between algorithms and challenging games.Implemented algorithms:
- [x] Nips DQN [[1]](#references)
- [x] Nature DQN [[2]](#references)
- [x] Double DQN [[3]](#references)
- [ ] Prioritised Experience Replay [[4]](#references)
- [ ] Dueling Network Architecture [[5]](#references)## Requirement
- gym
- PyTorch
- OpenCV
- tensorboardThis project runs on python >= 3.6, use pip to install dependencies:
```
pip3 install -r requirements.txt
```### Project report
See project report [here](https://www.researchgate.net/publication/335392857_The_genesis_of_beating_Atari_games).References
----------[1] [Playing Atari with Deep Reinforcement Learning](http://arxiv.org/abs/1312.5602)
[2] [Human-level control through deep reinforcement learning](https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf)
[3] [Deep Reinforcement Learning with Double Q-learning](http://arxiv.org/abs/1509.06461)
[4] [Prioritized Experience Replay](http://arxiv.org/abs/1511.05952)
[5] [Dueling Network Architectures for Deep Reinforcement Learning](http://arxiv.org/abs/1511.06581)