Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pydata/bottleneck
Fast NumPy array functions written in C
https://github.com/pydata/bottleneck
c c-extension fast numpy python
Last synced: 25 days ago
JSON representation
Fast NumPy array functions written in C
- Host: GitHub
- URL: https://github.com/pydata/bottleneck
- Owner: pydata
- License: bsd-2-clause
- Created: 2010-11-27T23:21:22.000Z (almost 14 years ago)
- Default Branch: master
- Last Pushed: 2024-05-23T20:02:59.000Z (6 months ago)
- Last Synced: 2024-06-12T22:29:11.765Z (5 months ago)
- Topics: c, c-extension, fast, numpy, python
- Language: Python
- Homepage:
- Size: 12.9 MB
- Stars: 1,019
- Watchers: 32
- Forks: 100
- Open Issues: 51
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
- my-awesome-starred - bottleneck - Fast NumPy array functions written in Cython (Python)
- best-of-python - GitHub - 20% open · ⏱️ 23.05.2024): (Data Containers & Dataframes)
- awesome-systematic-trading - Bottleneck - commit/pydata/bottleneck/master) ![GitHub Repo stars](https://img.shields.io/github/stars/pydata/bottleneck?style=social) | Python, C | - Fast NumPy array functions written in C (Basic Components / Python Performance Booster)
- awesome-list - Bottleneck - Fast NumPy array functions written in C. (Linear Algebra / Statistics Toolkit / General Purpose Tensor Library)
- awesome-python-machine-learning-resources - GitHub - 15% open · ⏱️ 02.07.2022): (数据容器和结构)
README
.. image:: https://github.com/pydata/bottleneck/workflows/Github%20Actions/badge.svg
:target: https://github.com/pydata/bottleneck/actions==========
Bottleneck
==========Bottleneck is a collection of fast NumPy array functions written in C.
Let's give it a try. Create a NumPy array:
.. code-block:: pycon
>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])Find the nanmean:
.. code-block:: pycon
>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0Moving window mean:
.. code-block:: pycon
>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. , 1.5, 2. , 4. , 4.5])Benchmark
=========Bottleneck comes with a benchmark suite:
.. code-block:: pycon
>>> bn.bench()
Bottleneck performance benchmark
Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
Speed is NumPy time divided by Bottleneck time
NaN means approx one-fifth NaNs; float64 usedno NaN no NaN NaN no NaN NaN
(100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000)
axis=0 axis=0 axis=0 axis=1 axis=1
nansum 29.7 1.4 1.6 2.0 2.1
nanmean 99.0 2.0 1.8 3.2 2.5
nanstd 145.6 1.8 1.8 2.7 2.5
nanvar 138.4 1.8 1.8 2.8 2.5
nanmin 27.6 0.5 1.7 0.7 2.4
nanmax 26.6 0.6 1.6 0.7 2.5
median 120.6 1.3 4.9 1.1 5.7
nanmedian 117.8 5.0 5.7 4.8 5.5
ss 13.2 1.2 1.3 1.5 1.5
nanargmin 66.8 5.5 4.8 3.5 7.1
nanargmax 57.6 2.9 5.1 2.5 5.3
anynan 10.2 0.3 52.3 0.8 41.6
allnan 15.1 196.0 156.3 135.8 111.2
rankdata 45.9 1.2 1.2 2.1 2.1
nanrankdata 50.5 1.4 1.3 2.4 2.3
partition 3.3 1.1 1.6 1.0 1.5
argpartition 3.4 1.2 1.5 1.1 1.6
replace 9.0 1.5 1.5 1.5 1.5
push 1565.6 5.9 7.0 13.0 10.9
move_sum 2159.3 31.1 83.6 186.9 182.5
move_mean 6264.3 66.2 111.9 361.1 246.5
move_std 8653.6 86.5 163.7 232.0 317.7
move_var 8856.0 96.3 171.6 267.9 332.9
move_min 1186.6 13.4 30.9 23.5 45.0
move_max 1188.0 14.6 29.9 23.5 46.0
move_argmin 2568.3 33.3 61.0 49.2 86.8
move_argmax 2475.8 30.9 58.6 45.0 82.8
move_median 2236.9 153.9 151.4 171.3 166.9
move_rank 847.1 1.2 1.4 2.3 2.6You can also run a detailed benchmark for a single function using, for
example, the command:.. code-block:: pycon
>>> bn.bench_detailed("move_median", fraction_nan=0.3)
Only arrays with data type (dtype) int32, int64, float32, and float64 are
accelerated. All other dtypes result in calls to slower, unaccelerated
functions. In the rare case of a byte-swapped input array (e.g. a big-endian
array on a little-endian operating system) the function will not be
accelerated regardless of dtype.Where
======================== ========================================================
download https://pypi.python.org/pypi/Bottleneck
docs https://bottleneck.readthedocs.io
code https://github.com/pydata/bottleneck
mailing list https://groups.google.com/group/bottle-neck
=================== ========================================================License
=======Bottleneck is distributed under a Simplified BSD license. See the LICENSE file
and LICENSES directory for details.Install
=======Requirements:
======================== ============================================================================
Bottleneck Python 2.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11; NumPy 1.16.0+
Compile gcc, clang, MinGW or MSVC
Unit tests pytest
Documentation sphinx, numpydoc
======================== ============================================================================To install Bottleneck on Linux, Mac OS X, et al.:
.. code-block:: console
$ pip install .
To install bottleneck on Windows, first install MinGW and add it to your
system path. Then install Bottleneck with the command:.. code-block:: console
$ python setup.py install --compiler=mingw32
Alternatively, you can use the Windows binaries created by Christoph Gohlke:
http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneckUnit tests
==========After you have installed Bottleneck, run the suite of unit tests:
.. code-block:: pycon
In [1]: import bottleneck as bn
In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items
bottleneck/tests/input_modification_test.py ........................... [ 14%]
.. [ 15%]
bottleneck/tests/list_input_test.py ............................. [ 30%]
bottleneck/tests/move_test.py ................................. [ 47%]
bottleneck/tests/nonreduce_axis_test.py .................... [ 58%]
bottleneck/tests/nonreduce_test.py .......... [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............ [ 90%]
bottleneck/tests/scalar_input_test.py .................. [100%]
========================= 190 passed in 46.42 seconds =========================
Out[2]: TrueIf developing in the git repo, simply run ``py.test``