Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pylat/adaptive-proximal-algorithms
A Julia package for adaptive proximal gradient and primal-dual algorithms
https://github.com/pylat/adaptive-proximal-algorithms
adaptive-learning-rate convex-optimization linesearch-free-methods machine-learning optimization primal-dual-algorithms proximal-gradient-method
Last synced: about 1 month ago
JSON representation
A Julia package for adaptive proximal gradient and primal-dual algorithms
- Host: GitHub
- URL: https://github.com/pylat/adaptive-proximal-algorithms
- Owner: pylat
- Created: 2023-01-09T11:47:54.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-01-18T06:16:05.000Z (11 months ago)
- Last Synced: 2024-01-29T11:47:30.664Z (11 months ago)
- Topics: adaptive-learning-rate, convex-optimization, linesearch-free-methods, machine-learning, optimization, primal-dual-algorithms, proximal-gradient-method
- Language: Julia
- Homepage:
- Size: 883 KB
- Stars: 8
- Watchers: 2
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Adaptive Proximal Algorithms
This repository contains Julia code for the paper
> Latafat, Themelis, Stella, Patrinos, *Adaptive proximal algorithms for convex optimization under local Lipschitz continuity of the gradient*, [arXiv:2301.04431](https://arxiv.org/abs/2301.04431) (2023).
Algorithms are implemented [here](./src/AdaProx.jl).
## Running experiments
Run the following from the repository root:
```sh
# set up environment
julia --project=./experiments -e 'using Pkg; Pkg.develop(path="."); Pkg.instantiate()'# download datasets for experiments
julia --project=./experiments experiments/download_datasets.jl
```Then run the scripts from the subfolders.
For example, run the lasso experiments as follows:```sh
julia --project=./experiments experiments/lasso/runme.jl
```This will generate plots in the same subfolder.