Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pyro-ppl/Pyro-M5-Starter-Kit
Learn Pyro through the M5 forecasting competition
https://github.com/pyro-ppl/Pyro-M5-Starter-Kit
Last synced: 18 days ago
JSON representation
Learn Pyro through the M5 forecasting competition
- Host: GitHub
- URL: https://github.com/pyro-ppl/Pyro-M5-Starter-Kit
- Owner: pyro-ppl
- License: apache-2.0
- Created: 2020-03-10T04:28:18.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-04-07T04:38:17.000Z (over 4 years ago)
- Last Synced: 2024-07-31T21:55:18.057Z (3 months ago)
- Language: Python
- Homepage:
- Size: 6.49 MB
- Stars: 83
- Watchers: 7
- Forks: 10
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Pyro M5 Starter Kit
This repo aims to help you learn the [Pyro](https://pyro.ai) probabilistic programming language through the [M5 forecasting competition](https://www.kaggle.com/c/m5-forecasting-uncertainty/overview).
## Documentation resources
- Pyro [reference docs](https://docs.pyro.ai)
- [Installation](https://docs.pyro.ai/en/stable/installation.html)
- [Forecasting](https://docs.pyro.ai/en/stable/contrib.forecast.html)
- [Distributions](https://docs.pyro.ai/en/stable/distributions.html)
- [Reparameterizers](https://docs.pyro.ai/en/stable/infer.reparam.html)
- [Time series](https://docs.pyro.ai/en/stable/contrib.timeseries.html)
- Pyro [tutorials](https://pyro.ai/examples)
- Pyro [forum](https://forum.pyro.ai) <---- ask questions here
- PyTorch [reference docs](https://pytorch.org/docs/stable/index.html)
- M5 competition [overview](https://www.kaggle.com/c/m5-forecasting-uncertainty/overview)
- M5 exploratory data analysis [notebook](https://www.kaggle.com/headsortails/back-to-predict-the-future-interactive-m5-eda) (thanks to Martin Henze)I'd recommend starting with the following sequence of Pyro tutorials. These build up to [Forecasting III's Model2](https://pyro.ai/examples/forecasting_iii.html#Deeper-hierarchical-models) which is very close to the M5 forecasting problem.
1. [Pyro models](https://pyro.ai/examples/intro_part_i.html) *recommended*
2. [Pyro inference](https://pyro.ai/examples/intro_part_ii.html)
3. [Stochastic variational inference I](https://pyro.ai/examples/svi_part_i.html)
4. [Stochastic variational inference II](https://pyro.ai/examples/svi_part_ii.html) *recommended*
5. [Stochastic variational inference III](https://pyro.ai/examples/svi_part_iii.html)
6. [Tensor Shapes](https://pyro.ai/examples/tensor_shapes.html) *recommended*
7. [Forecasting I: univariate, heavy tailed](https://pyro.ai/examples/forecasting_i.html) *recommended*
8. [Forecasting II: state space models](https://pyro.ai/examples/forecasting_i.html)
9. [Forecasting III: hierarchical models](https://pyro.ai/examples/forecasting_i.html) *recommended*## Contributions welcome!
We believe in friendly competition that builds on collaboration.