Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pythonhubdev/auto-research-bot
A Streamlit-based bot for automated research and report generation using Langchain and SQLAlchemy. Effortlessly create and manage chat sessions, generate detailed summaries, and save reports with ease.
https://github.com/pythonhubdev/auto-research-bot
Last synced: 28 days ago
JSON representation
A Streamlit-based bot for automated research and report generation using Langchain and SQLAlchemy. Effortlessly create and manage chat sessions, generate detailed summaries, and save reports with ease.
- Host: GitHub
- URL: https://github.com/pythonhubdev/auto-research-bot
- Owner: pythonhubdev
- Created: 2024-07-06T22:02:46.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-09-10T13:58:40.000Z (about 2 months ago)
- Last Synced: 2024-09-10T15:33:10.365Z (about 2 months ago)
- Language: Python
- Size: 128 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# AutoResearchBot
A multi-agent system that automates research and generates concise reports on given topics using Langchain and
Streamlit, with data stored in SQLite.## Features
- **Automated Research**: Gathers information on a given topic using various APIs.
- **Summarization**: Generates concise summaries using a language model.
- **Interactive Interface**: User-friendly Streamlit interface to input topics and view/edit summaries.
- **Database Integration**: Stores edited summaries in an SQLite database.## Requirements
- Python 3.10+
- Docker (for containerized setup)## Setup
### Local Setup
1. **Clone the Repository:**
```bash
git clone https://github.com/your-username/AutoResearchBot.git
cd AutoResearchBot
```2. **Create a Virtual Environment:**
```bash
poetry install
poetry shell
```
3. **Set Up Environment Variables:**
Create a `.env` file in the root directory and add the following:
```bash
OPENAI_API_KEY=your_openai_api_key
```
4. Run the Application:
```bash
streamlit run app.py
```## Docker Setup
1. Build the Docker Image:
```bash
docker build -t autoresearchbot .
```2. Run the Docker Container:
```bash
docker run -d -p 8501:8501 --env OPENAI_API_KEY=your_openai_api_key autoresearchbot
```## Usage
1. **Input a Topic:** Enter a topic in the input field on the Streamlit interface.
2. **Generate Report:** Click the "Generate Report" button to fetch data and generate a summary.
3. **Edit and Save Summary:** Edit the summary if needed and click the "Save Summary" button to store it in the
database.