An open API service indexing awesome lists of open source software.

https://github.com/pytorch/QNNPACK

Quantized Neural Network PACKage - mobile-optimized implementation of quantized neural network operators
https://github.com/pytorch/QNNPACK

Last synced: 4 months ago
JSON representation

Quantized Neural Network PACKage - mobile-optimized implementation of quantized neural network operators

Awesome Lists containing this project

README

        

# QNNPACK
QNNPACK (Quantized Neural Networks PACKage) is a mobile-optimized library for low-precision high-performance neural network inference. QNNPACK provides implementation of common neural network operators on quantized 8-bit tensors.

QNNPACK is not intended to be directly used by machine learning researchers; instead it provides low-level performance primitives for high-level deep learning frameworks. As of today, QNNPACK is integrated in [PyTorch 1.0](https://github.com/pytorch/pytorch) with Caffe2 graph representation.

## Operator Coverage

Currently implemented and planned for implementation operators are below:

- [x] 2D Convolution
- [x] 2D Deconvolution
- [x] Channel Shuffle
- [x] Fully Connected
- [ ] Locally Connected
- [x] 2D Max Pooling
- [x] 2D Average Pooling
- [x] Global Average Pooling
- [x] Sigmoid
- [x] Leaky ReLU
- [x] Clamp (can be used for ReLU, ReLU6 if it is not fused in another operator)
- [x] SoftArgMax (aka SoftMax)
- [ ] Group Normalization

## Building

QNNPACK provides standard CMake-based build scripts.

### Native compilation

Users are recommended to use `scripts/build-local.sh` script to build QNNPACK for the host machine.

### Cross-compilation for Android

To cross-compile for Android, set `$ANDROID_NDK` environment variable (where `$ANDROID_NDK` is the path to Android NDK directory, e.g. `/opt/android-ndk-r15c`) and use one of the scripts from the table below:

| ABI | Build script | Restrictions |
| ----------- | ---------------------------------| -------------------------- |
| armeabi-v7a | `scripts/build-android-armv7.sh` | Requires CPU with ARM NEON |
| arm64-v8a | `scripts/build-android-arm64.sh` | |
| x86 | `scripts/build-android-x86.sh` | |

Notes:
- On **armeabi-v7a** `qnnp_initialize` will fail with `qnnp_status_unsupported_hardware` if the mobile CPU does not support ARM NEON. Don't set `-DANDROID_ARM_NEON=1` for QNNPACK compilation as it can make `qnnp_initialize` crash on CPUs without ARM NEON.

### Cross-compilation for iOS

To cross-compile for iOS, clone [ios-cmake](https://github.com/leetal/ios-cmake), and set `$IOS_CMAKE_TOOLCHAIN_FILE` environment variable (where `$IOS_CMAKE_TOOLCHAIN_FILE` is the path to `ios.toolchain.cmake` file in [ios-cmake](https://github.com/leetal/ios-cmake)), and use one of the scripts from the table below:

| Architecture | Build script | Notes |
| ------------ | ----------------------------- | ------------------------- |
| armv7 | `scripts/build-ios-armv7.sh` | iPhone 3GS/4/4S |
| armv7 | `scripts/build-ios-armv7s.sh` | iPhone 5 and newer |
| arm64 | `scripts/build-ios-arm64.sh` | iPhone 5S and newer |
| arm64e | `scripts/build-ios-arm64e.sh` | iPhone XS/XR |
| i386 | `scripts/build-ios-i386.sh` | iPhone Simulator (32-bit) |
| x86_64 | `scripts/build-ios-x86_64.sh` | iPhone Simulator (64-bit) |

## End-to-End Benchmarking

Caffe2 backend of PyTorch 1.0 natively integrates QNNPACK, and provides a [pre-trained quantized MobileNet v2 model](https://github.com/caffe2/models/tree/master/mobilenet_v2_quantized). Below are instructions for benchmarking this model end-to-end with QNNPACK.

### Raspberry Pi 2 or 3

```bash
# Clone PyTorch 1.0 repo
git clone --recursive https://github.com/pytorch/pytorch.git
cd pytorch

# Optional: update QNNPACK submodule to latest revision
git submodule update --remote third_party/QNNPACK

# Build Caffe2 (including binaries) for the host system
# Use only 1 thread for build to avoid out-of-memory failures
MAX_JOBS=1 scripts/build_local.sh -DBUILD_BINARY=ON -DBUILD_PYTHON=OFF \
-DUSE_OBSERVERS=OFF -DUSE_DISTRIBUTED=OFF

# Download model weights
wget https://s3.amazonaws.com/download.caffe2.ai/models/mobilenet_v2_1.0_224_quant/init_net.pb

# Download model graph
wget https://s3.amazonaws.com/download.caffe2.ai/models/mobilenet_v2_1.0_224_quant/predict_net.pb

# Run speed benchmark with 50 warm-up iterations and 10 measurement iterations
build/bin/speed_benchmark --net predict_net.pb --init_net init_net.pb \
--input data --input_dims 1,3,224,224 --input_type float \
--warmup 50 --iter 10
```

### ARMv7 (32-bit) Android

```bash
# Clone PyTorch 1.0 repo
git clone --recursive https://github.com/pytorch/pytorch.git
cd pytorch

# Optional: update QNNPACK submodule to latest revision
git submodule update --remote third_party/QNNPACK

# Build Caffe2 (including binaries) for Android, and push to device
scripts/build_android.sh -DANDROID_TOOLCHAIN=clang -DBUILD_BINARY=ON
adb push build_android/bin/speed_benchmark /data/local/tmp/speed_benchmark

# Download model weights and copy them to Android device
wget https://s3.amazonaws.com/download.caffe2.ai/models/mobilenet_v2_1.0_224_quant/init_net.pb
adb push init_net.pb /data/local/tmp/init_net.pb

# Download model graph and copy it to Android device
wget https://s3.amazonaws.com/download.caffe2.ai/models/mobilenet_v2_1.0_224_quant/predict_net.pb
adb push predict_net.pb /data/local/tmp/predict_net.pb

# Run speed benchmark with 50 warm-up iterations and 10 measurement iterations
adb shell /data/local/tmp/speed_benchmark \
--net /data/local/tmp/predict_net.pb \
--init_net /data/local/tmp/init_net.pb \
--input data --input_dims 1,3,224,224 --input_type float \
--warmup 50 --iter 10
```

### ARM64 (64-bit) Android

```bash
# Clone PyTorch 1.0 repo
git clone --recursive https://github.com/pytorch/pytorch.git
cd pytorch

# Optional: update QNNPACK submodule to latest revision
git submodule update --remote third_party/QNNPACK

# Build Caffe2 (including binaries) for Android, and push to device
scripts/build_android.sh -DANDROID_ABI=arm64-v8a -DANDROID_TOOLCHAIN=clang -DBUILD_BINARY=ON
adb push build_android/bin/speed_benchmark /data/local/tmp/speed_benchmark

# Download model weights and copy them to Android device
wget https://s3.amazonaws.com/download.caffe2.ai/models/mobilenet_v2_1.0_224_quant/init_net.pb
adb push init_net.pb /data/local/tmp/init_net.pb

# Download model graph and copy it to Android device
wget https://s3.amazonaws.com/download.caffe2.ai/models/mobilenet_v2_1.0_224_quant/predict_net.pb
adb push predict_net.pb /data/local/tmp/predict_net.pb

# Run speed benchmark with 50 warm-up iterations and 10 measurement iterations
adb shell /data/local/tmp/speed_benchmark \
--net /data/local/tmp/predict_net.pb \
--init_net /data/local/tmp/init_net.pb \
--input data --input_dims 1,3,224,224 --input_type float \
--warmup 50 --iter 10
```

### PEP (Performance Evaluation Platform) Method

[Facebook AI Performance Evaluation Platform](https://github.com/facebook/FAI-PEP) is a framework and backend agnostic benchmarking platform to compare machine learning inferencing runtime metrics on a set of models and a variety of backends.

We use PEP to produce the results we have in our [blog](https://code.fb.com/ml-applications/qnnpack/)

With an ARMv7 device connected:

```bash
# Clone PyTorch 1.0 repo
mkdir ~/Code && cd ~/Code
git clone --recursive https://github.com/pytorch/pytorch.git
cd pytorch

# Optional: update QNNPACK submodule to latest revision
git submodule update --remote third_party/QNNPACK

# Clone PEP repo
cd ~/Code
git clone --recursive https://github.com/facebook/FAI-PEP.git aibench
cd aibench

# Run PEP benchmark with cool specifications. Try changing that cmd with more specifications!
# First time compile could take 20+ minutes
./benchmarking/run_bench.py \
--platform android \
-b ~/Code/aibench/specifications/models/caffe2/mobilenet_v2/mobilenet_v2_quant.json \
--platform android --repo_dir ~/Code/pytorch \
--frameworks_dir ~/Code/aibench/specifications/frameworks --framework caffe2
```

## Acknowledgements

QNNPACK is developed by Marat Dukhan, Yiming Wu, Hao Lu, and Bert Maher. We thank Andrew Tulloch and Yangqing Jia for advice during the development of QNNPACK.

## License

QNNPACK is BSD licensed, as found in the [`LICENSE`](LICENSE) file.