https://github.com/qengineering/lffd-mnn-jetson-nano
Face detection with MNN on a Jetson Nano
https://github.com/qengineering/lffd-mnn-jetson-nano
aarch64 deep-learning face-detection jetson-nano lffd mnn mnn-model
Last synced: 2 days ago
JSON representation
Face detection with MNN on a Jetson Nano
- Host: GitHub
- URL: https://github.com/qengineering/lffd-mnn-jetson-nano
- Owner: Qengineering
- License: bsd-3-clause
- Created: 2021-04-15T11:00:38.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2021-04-15T11:07:46.000Z (over 4 years ago)
- Last Synced: 2025-04-13T18:55:40.820Z (6 months ago)
- Topics: aarch64, deep-learning, face-detection, jetson-nano, lffd, mnn, mnn-model
- Language: C++
- Homepage: https://qengineering.eu/deep-learning-examples-on-raspberry-32-64-os.html
- Size: 24.2 MB
- Stars: 5
- Watchers: 1
- Forks: 1
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# LFFD face detection Jetson Nano

## LFFD face detection with the MNN framework.
[](https://opensource.org/licenses/BSD-3-Clause)
Paper: https://arxiv.org/pdf/1904.10633.pdf
Special made for a Jetson Nano see [Q-engineering deep learning examples](https://qengineering.eu/deep-learning-examples-on-raspberry-32-64-os.html)------------
## Benchmark.
| Model | framework | model |size | mAP | Jetson Nano
2015 MHz | RPi 4 64-OS
1950 MHz |
| ------------- | :-----: | :-----: | :-----: | :-----: | :-------------: | :-------------: |
| Ultra-Light-Fast| ncnn | slim-320 | 320x240 | 67.1 | - FPS | 26 FPS |
| Ultra-Light-Fast| ncnn | RFB-320 | 320x240 | 69.8 | - FPS | 23 FPS |
| Ultra-Light-Fast| MNN | slim-320 | 320x240 | 67.1 | 70 FPS | 65 FPS |
| Ultra-Light-Fast| MNN | RFB-320 | 320x240 | 69.8 | 60 FPS | 56 FPS |
| Ultra-Light-Fast| OpenCV | slim-320 | 320x240 | 67.1 | 48 FPS | 40 FPS |
| Ultra-Light-Fast| OpenCV | RFB-320 | 320x240 | 69.8 | 43 FPS | 35 FPS |
| Ultra-Light-Fast + Landmarks| ncnn | slim-320 | 320x240 | 67.1 | 50 FPS | 24 FPS |
| LFFD| ncnn | 5 stage | 320x240 | 88.6 | 16.4 FPS | 4.85 FPS |
| LFFD| ncnn | 8 stage | 320x240 | 88.6 | 11.7 FPS | 3.45 FPS |
| LFFD| MNN | 5 stage | 320x240 | 88.6 | **2.6 FPS** | 2.17 FPS |
| LFFD| MNN | 8 stage | 320x240 | 88.6 | **1.8 FPS** | 1.49 FPS |------------
## Dependencies.
To run the application, you have to:
- The Alibaba's MNN framework installed. (https://qengineering.eu/install-mnn-on-jetson-nano.html)
- Code::Blocks installed. (```$ sudo apt-get install codeblocks```)------------
## Installing the app.
To extract and run the network in Code::Blocks
$ mkdir *MyDir*
$ cd *MyDir*
$ wget https://github.com/Qengineering/LFFD-MNN-Raspberry-Pi-4/archive/refs/heads/main.zip
$ unzip -j master.zip
Remove master.zip, LICENSE and README.md as they are no longer needed.
$ rm master.zip
$ rm LICENSE
$ rm README.md
Your *MyDir* folder must now look like this:
images folder
Walks2.mp4
FaceDetection_LFFD_MNN.cpb
main.cpp
LFFD_MNN.h
LFFD_MNN.cpp
symbol_10_320_20L_5scales_v2_deploy.mnn
symbol_10_560_25L_8scales_v1_deploy.mnn------------
## Running the app.
To run the application load the project file FaceDetection_LFFD_MNN.cbp in Code::Blocks.
Next, follow the instructions at [Hands-On](https://qengineering.eu/deep-learning-examples-on-raspberry-32-64-os.html#HandsOn).
