Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/qgallouedec/panda-gym
Set of robotic environments based on PyBullet physics engine and gymnasium.
https://github.com/qgallouedec/panda-gym
artificial-intelligence deep-learning franka-emika machine-learning python reinforcement-learning robotics
Last synced: 3 days ago
JSON representation
Set of robotic environments based on PyBullet physics engine and gymnasium.
- Host: GitHub
- URL: https://github.com/qgallouedec/panda-gym
- Owner: qgallouedec
- License: mit
- Created: 2020-09-13T18:13:39.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-07-23T07:27:41.000Z (6 months ago)
- Last Synced: 2025-01-16T19:15:54.628Z (10 days ago)
- Topics: artificial-intelligence, deep-learning, franka-emika, machine-learning, python, reinforcement-learning, robotics
- Language: Python
- Homepage:
- Size: 32.4 MB
- Stars: 601
- Watchers: 8
- Forks: 117
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-simulation - panda-gym - OpenaAI Gym Franka Emika Panda robot environment based on PyBullet. ([PyBullet](https://github.com/bulletphysics/bullet3))
README
# panda-gym
Set of robotic environments based on PyBullet physics engine and gymnasium.
[![PyPI version](https://img.shields.io/pypi/v/panda-gym.svg?logo=pypi&logoColor=FFE873)](https://pypi.org/project/panda-gym/)
[![Downloads](https://static.pepy.tech/badge/panda-gym)](https://pepy.tech/project/panda-gym)
[![GitHub](https://img.shields.io/github/license/qgallouedec/panda-gym.svg)](LICENSE.txt)
[![build](https://github.com/qgallouedec/panda-gym/actions/workflows/build.yml/badge.svg?branch=master)](https://github.com/qgallouedec/panda-gym/actions/workflows/build.yml)
[![codecov](https://codecov.io/gh/qgallouedec/panda-gym/branch/master/graph/badge.svg?token=pv0VdsXByP)](https://codecov.io/gh/qgallouedec/panda-gym)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![arXiv](https://img.shields.io/badge/cs.LG-arXiv%3A2106.13687-B31B1B.svg)](https://arxiv.org/abs/2106.13687)## Documentation
Check out the [documentation](https://panda-gym.readthedocs.io/en/latest/).
## Installation
### Using PyPI
```bash
pip install panda-gym
```### From source
```bash
git clone https://github.com/qgallouedec/panda-gym.git
pip install -e panda-gym
```## Usage
```python
import gymnasium as gym
import panda_gymenv = gym.make('PandaReach-v3', render_mode="human")
observation, info = env.reset()
for _ in range(1000):
action = env.action_space.sample() # random action
observation, reward, terminated, truncated, info = env.step(action)if terminated or truncated:
observation, info = env.reset()env.close()
```You can also [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qgallouedec/panda-gym/blob/master/examples/PickAndPlace.ipynb)
## Environments
| | |
| :------------------------------: | :--------------------------------------------: |
| `PandaReach-v3` | `PandaPush-v3` |
| ![PandaReach-v3](docs/_static/img/reach.png) | ![PandaPush-v3](docs/_static/img/push.png) |
| `PandaSlide-v3` | `PandaPickAndPlace-v3` |
| ![PandaSlide-v3](docs/_static/img/slide.png) | ![PandaPickAndPlace-v3](docs/_static/img/pickandplace.png) |
| `PandaStack-v3` | `PandaFlip-v3` |
| ![PandaStack-v3](docs/_static/img/stack.png) | ![PandaFlip-v3](docs/_static/img/flip.png) |## Baselines results
Baselines results are available in [rl-baselines3-zoo](https://github.com/DLR-RM/rl-baselines3-zoo) and the pre-trained agents in the [Hugging Face Hub](https://huggingface.co/sb3).
## Citation
Cite as
```bib
@article{gallouedec2021pandagym,
title = {{panda-gym: Open-Source Goal-Conditioned Environments for Robotic Learning}},
author = {Gallou{\'e}dec, Quentin and Cazin, Nicolas and Dellandr{\'e}a, Emmanuel and Chen, Liming},
year = 2021,
journal = {4th Robot Learning Workshop: Self-Supervised and Lifelong Learning at NeurIPS},
}
```Environments are widely inspired from [OpenAI Fetch environments](https://openai.com/blog/ingredients-for-robotics-research/).