Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/qijiezhao/py-denseflow
Extract TVL1 optical flows in python (multi-process && multi-server)
https://github.com/qijiezhao/py-denseflow
optical-flow python tvl1
Last synced: 20 days ago
JSON representation
Extract TVL1 optical flows in python (multi-process && multi-server)
- Host: GitHub
- URL: https://github.com/qijiezhao/py-denseflow
- Owner: qijiezhao
- Created: 2017-07-19T03:20:09.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-01-14T05:55:09.000Z (almost 7 years ago)
- Last Synced: 2023-11-07T19:01:40.991Z (about 1 year ago)
- Topics: optical-flow, python, tvl1
- Language: Python
- Homepage:
- Size: 8.79 KB
- Stars: 188
- Watchers: 6
- Forks: 68
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Py-denseflow
This is a python port of denseflow, which extract the videos' frames and **optical flow images** with **TVL1 algorithm** as default.
---
### Requirements:
- numpy
- cv2
- PIL.Image
- multiprocess
- scikit-video (optional)
- scipy## Installation
#### Install the requirements:
```
pip install -r requirements.txt```
---
## Usage
The denseflow.py contains two modes including '**run**' and '**debug**'.here 'debug' is built for debugging the video paths and video-read methods. ([IPython.embed](http://ipython.org/ipython-doc/dev/interactive/reference.html#embedding) suggested)
Just simply run the following code:
```
python denseflow.py --new_dir=denseflow_py --num_workers=1 --step=1 --bound=20 --mode=debug```
While in 'run' mode, here we provide multi-process as well as multi-server with manually s_/e_ IDs setting.for example: server 0 need to process 3000 videos with 4 processes parallelly working:
```
python denseflow.py --new_dir=denseflow_py --num_workers=4 --step=1 --bound=20 --mode=run --s_=0 --e_=3000
```---
Just feel free to let me know if any bugs exist.