Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/qingyonghu/sqn

SQN in Tensorflow (ECCV'2022)
https://github.com/qingyonghu/sqn

annotations computer-vision deep-learning point-cloud weakly-supervised-segmentation

Last synced: about 2 months ago
JSON representation

SQN in Tensorflow (ECCV'2022)

Awesome Lists containing this project

README

        

[![arXiv](https://img.shields.io/badge/arXiv-2104.04891-b31b1b.svg)](https://arxiv.org/abs/2104.04891)
[![GitHub Stars](https://img.shields.io/github/stars/QingyongHu/SQN?style=social)](https://github.com/QingyongHu/SQN)
![visitors](https://visitor-badge.glitch.me/badge?page_id=QingyongHu/SQN)
[![License CC BY-NC-SA 4.0](https://img.shields.io/badge/license-CC4.0-blue.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode)

# SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds (ECCV2022)

This is the official repository of the **Semantic Query Network (SQN)**. For technical details, please refer to:

**SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds**

[Qingyong Hu](https://qingyonghu.github.io/), [Bo Yang](https://yang7879.github.io/), [Guangchi Fang]()
, [Ales Leonardis](https://www.cs.bham.ac.uk/~leonarda/),
[Yulan Guo](http://yulanguo.me/), [Niki Trigoni](https://www.cs.ox.ac.uk/people/niki.trigoni/)
, [Andrew Markham](https://www.cs.ox.ac.uk/people/andrew.markham/).

**[[Paper](https://arxiv.org/abs/2104.04891)] [[Video](https://youtu.be/Q6wICSRRw3s)]**

### (1) Setup

This code has been tested with Python 3.5, Tensorflow 1.11, CUDA 9.0 and cuDNN 7.4.1 on Ubuntu 16.04/Ubuntu 18.04.

- Clone the repository

```
git clone --depth=1 https://github.com/QingyongHu/SQN && cd SQN
```

- Setup python environment

```
conda create -n sqn python=3.5
source activate sqn
pip install -r helper_requirements.txt
sh compile_op.sh
```

### (2) Training (Semantic3D as example)

First, follow the RandLA-Net [instruction](https://github.com/QingyongHu/RandLA-Net) to prepare the dataset, and then
manually change the
dataset [path](https://github.com/QingyongHu/SQN/blob/f75eb51532a5319c0da5320c20f58fbe5cb3bbcd/main_Semantic3D.py#L17) here.

- Start training with weakly supervised setting:
```
python main_Semantic3D.py --mode train --gpu 0 --labeled_point 0.1%
```
- Evaluation:
```
python main_Semantic3D.py --mode test --gpu 0 --labeled_point 0.1%
```

Quantitative results achieved by our SQN:

| ![2](imgs/Semantic3D.gif) | ![z](imgs/SensatUrban.gif) |
| ------------------------------ | ---------------------------- |
| ![2](imgs/Toronto3D.gif) | ![z](imgs/S3DIS.gif) |

### (3) Sparse Annotation Demo

### Citation

If you find our work useful in your research, please consider citing:

@inproceedings{hu2021sqn,
title={SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds},
author={Hu, Qingyong and Yang, Bo and Fang, Guangchi and Guo, Yulan and Leonardis, Ales and Trigoni, Niki and Markham, Andrew},
booktitle={European Conference on Computer Vision},
year={2022}
}

## Related Repos

1. [RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds](https://github.com/QingyongHu/RandLA-Net) ![GitHub stars](https://img.shields.io/github/stars/QingyongHu/RandLA-Net.svg?style=flat&label=Star)
2. [SoTA-Point-Cloud: Deep Learning for 3D Point Clouds: A Survey](https://github.com/QingyongHu/SoTA-Point-Cloud) ![GitHub stars](https://img.shields.io/github/stars/QingyongHu/SoTA-Point-Cloud.svg?style=flat&label=Star)
3. [3D-BoNet: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds](https://github.com/Yang7879/3D-BoNet) ![GitHub stars](https://img.shields.io/github/stars/Yang7879/3D-BoNet.svg?style=flat&label=Star)
4. [SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration](https://github.com/QingyongHu/SpinNet) ![GitHub stars](https://img.shields.io/github/stars/QingyongHu/SpinNet.svg?style=flat&label=Star)
5. [SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds](https://github.com/QingyongHu/SensatUrban) ![GitHub stars](https://img.shields.io/github/stars/QingyongHu/SensatUrban.svg?style=flat&label=Star)
6. [Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds](https://github.com/yifanzhang713/IA-SSD) ![GitHub stars](https://img.shields.io/github/stars/yifanzhang713/IA-SSD.svg?style=flat&label=Star)