An open API service indexing awesome lists of open source software.

https://github.com/qlan3/gym-games

A collection of Gymnasium compatible games for reinforcement learning.
https://github.com/qlan3/gym-games

atari deep-learning deep-reinforcement-learning exploration-game games gym-environments gym-pygame gymnasium minatar pygame reinforcement-learning

Last synced: 21 days ago
JSON representation

A collection of Gymnasium compatible games for reinforcement learning.

Awesome Lists containing this project

README

          

# Gym Games

This is a collection of Gymnasium compatible games for reinforcement learning.

> [!NOTE]
> For Gym compatible version, please check [v1.0.4](https://github.com/qlan3/gym-games/releases/tag/v1.0.4).

For [PyGame Learning Environment](https://pygame-learning-environment.readthedocs.io/en/latest/user/games.html), the default observation is a non-visual state representation of the game.

For [MinAtar](https://github.com/kenjyoung/MinAtar), the default observation is a visual input of the game.

## Environments

- PyGame learning environment:
- Catcher-PLE-v0
- FlappyBird-PLE-v0
- Pixelcopter-PLE-v0
- PuckWorld-PLE-v0
- Pong-PLE-v0

- MinAtar:
- Asterix-MinAtar-v1
- Breakout-MinAtar-v1
- Freeway-MinAtar-v1
- Seaquest-MinAtar-v1
- SpaceInvaders-MinAtar-v1

- Exploration games:
- NChain-v1
- LockBernoulli-v0
- LockGaussian-v0
- SparseMountainCar-v0
- DiabolicalCombLock-v0

## Installation

### Gymnasium

Please read the instruction [here](https://github.com/Farama-Foundation/Gymnasium).

### Pygame

- On OSX: See [here](https://www.pygame.org/wiki/MacCompile) for more details.

brew install sdl2 sdl2_image sdl2_mixer sdl2_ttf pkg-config
pip install pygame==2.5.2

- On Ubuntu:

sudo apt-get -y install python-pygame
pip install pygame==2.5.2

- Others: Please read the instruction [here](http://www.pygame.org/wiki/GettingStarted#Pygame%20Installation).

### PyGame Learning Environment

git clone https://github.com/ntasfi/PyGame-Learning-Environment.git
cd PyGame-Learning-Environment/
pip install -e .

## MinAtar

pip install minatar==1.0.15

### Gym-games

pip install git+https://github.com/qlan3/gym-games.git

## Example

Run ``python test.py``.

## Cite

Please use this bibtex to cite this repo:

```
@misc{gym-games,
author = {Lan, Qingfeng},
title = {Gym Compatible Games for Reinforcement Learning},
year = {2019},
publisher = {GitHub},
journal = {GitHub Repository},
howpublished = {\url{https://github.com/qlan3/gym-games}}
}
```

## References

- [gym](https://github.com/openai/gym/)
- [gym-ple](https://github.com/lusob/gym-ple)
- [SRNN](https://github.com/VincentLiu3/SRNN)
- [MinAtar](https://github.com/kenjyoung/MinAtar)
- [Latent State Decoding](https://github.com/microsoft/StateDecoding)
- [Gymnasium](https://github.com/Farama-Foundation/Gymnasium)