Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/qq456cvb/PRIN
Pointwise Rotation-Invariant Network (AAAI 2020)
https://github.com/qq456cvb/PRIN
pytorch rotation-invariant-features segmentation
Last synced: 3 months ago
JSON representation
Pointwise Rotation-Invariant Network (AAAI 2020)
- Host: GitHub
- URL: https://github.com/qq456cvb/PRIN
- Owner: qq456cvb
- Created: 2018-11-21T08:52:54.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2021-02-25T09:12:01.000Z (almost 4 years ago)
- Last Synced: 2024-08-01T03:46:11.189Z (6 months ago)
- Topics: pytorch, rotation-invariant-features, segmentation
- Language: Python
- Homepage:
- Size: 23.4 KB
- Stars: 85
- Watchers: 7
- Forks: 10
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# PRIN
## Pointwise Rotation-Invariant Network in PyTorch# News
An improved version of PRIN (SPRIN) is released [here](https://github.com/qq456cvb/SPRIN) and described in [PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features](https://arxiv.org/abs/2102.12093), which achieves much better results.## Overview
This repository is the Pytorch implementation of [PRIN (Pointwise Rotation-Invariant Network)](https://arxiv.org/pdf/1811.09361.pdf).
## Dependencies
* Install s2cnn (https://github.com/jonas-koehler/s2cnn) and its dependencies (pytorch, cupy, lie_learn, pynvrtc).
* Install pybind11 and compile the script under src (https://pybind11.readthedocs.io/)## Dataset and pretrained weights
* Download ShapeNet 17 Part Segmentation Dataset in h5py format from
https://drive.google.com/drive/folders/1wC-DpeRtxuuEvffubWdhwoGXGeW052Vy?usp=sharing
* Download pretrained weights (trained on unrotated shapes) from
https://drive.google.com/open?id=1QnFqQdWmx0cYtYeN9tJNlf-E5ZLawRBv
## Usage
* For training, run "python train.py --log_dir log --model_path ./model.py --num_workers 4"
* For testing, run "python test.py --weight_path ./state.pkl --model_path ./model.py --num_workers 4"
## License
MIT## References
Our paper is available on https://arxiv.org/abs/1811.09361.## Citation
@inproceedings{you2020pointwise,
title={Pointwise rotation-invariant network with adaptive sampling and 3d spherical voxel convolution},
author={You, Yang and Lou, Yujing and Liu, Qi and Tai, Yu-Wing and Ma, Lizhuang and Lu, Cewu and Wang, Weiming},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={07},
pages={12717--12724},
year={2020}
}