Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/qri-io/qri-python
qri python client
https://github.com/qri-io/qri-python
hacktoberfest hacktoberfest2020 python python-client
Last synced: 6 days ago
JSON representation
qri python client
- Host: GitHub
- URL: https://github.com/qri-io/qri-python
- Owner: qri-io
- License: mit
- Created: 2017-12-08T17:58:44.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2023-05-23T00:12:20.000Z (over 1 year ago)
- Last Synced: 2024-10-13T01:36:53.768Z (about 1 month ago)
- Topics: hacktoberfest, hacktoberfest2020, python, python-client
- Language: Python
- Homepage:
- Size: 80.1 KB
- Stars: 5
- Watchers: 5
- Forks: 3
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# qri-python
```
██████╗ ██████╗ ██╗
██╔═══██╗██╔══██╗██║
██║ ██║██████╔╝██║
██║▄▄ ██║██╔══██╗██║
╚██████╔╝██║ ██║██║
╚══▀▀═╝ ╚═╝ ╚═╝╚═╝
```Python client for qri ("query")
# Installation
```
pip install qri
```# About
Python wrapper to enable usage of [qri](https://qri.io/), the dataset toolchain. Can
either use a locally installed qri command-line program to work with your local repository,
or can directly get datasets from the [Qri Cloud](https://qri.cloud).Dataset objects returned by this library have the components that exist in the
[standard qri model](https://qri.io/docs/dataset-components/overview). The body is returned
as a Pandas DataFrame in order to easily integrate with other data science systems, like
Jupyter Notebook.# Usage
The following examples assume you have the latest release of the qri command-line client
installed. You can get this from https://github.com/qri-io/qri/releases```
import qri
``````
# Pull a dataset from cloud and add it to your repository
$ qri.pull("b5/world_bank_population")
```
> Fetching from registry...
>
> "Added b5/world_bank_population: ..."```
# List datasets in your repository
$ qri.list()
```
> [Dataset("b5/world_bank_population")]```
# Get that single dataset as a variable
$ d = qri.get("b5/world_bank_population")
``````
# Look at metadata description
$ d.meta.description
```
> ( 1 ) United Nations Population Division. World Population Prospects: 2017 Revision...```
# Get the dataset body as a pandas DataFrame
$ d.body
```
> `. country_name country_code indicator_name ...`
>
> `0 Afghanistan AFG Population, total ...`
>
> `...`TODO: Save changes
# Development
Clone this repository
```
git clone https://github.com/qri-io/qri-python
```Navigate to the directory where you run jupyter from:
```
cd /path/where/jupyter/is/run
```Symlink the cloned repository's source directory here:
```
ln -s /path/to/cloned/qri-python/qri .
```NOTE: The clone command created the directory "qri-python", and inside is the source directory named "qri". Make sure to symlink the source directory, not just the repository root
This package should now be usable from within Jupyter Notebook