https://github.com/quantum-software-development/7-datamining-regression-techniques-data-integration
7-Data Minining - Regression Techniques with Data Integration
https://github.com/quantum-software-development/7-datamining-regression-techniques-data-integration
Last synced: 4 months ago
JSON representation
7-Data Minining - Regression Techniques with Data Integration
- Host: GitHub
- URL: https://github.com/quantum-software-development/7-datamining-regression-techniques-data-integration
- Owner: Quantum-Software-Development
- License: mit
- Created: 2025-09-12T16:24:36.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2025-09-24T12:02:47.000Z (4 months ago)
- Last Synced: 2025-09-24T14:12:59.085Z (4 months ago)
- Language: Jupyter Notebook
- Homepage: https://github.com/Quantum-Software-Development/7-DataMining-Regression-Techniques-Data-Integration
- Size: 1.19 MB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
**\[[π§π· PortuguΓͺs](README.pt_BR.md)\] \[**[πΊπΈ English](README.md)**\]**
# 7- [Data Mining]() / Regression Techniques with Data Integration
[**Institution:**]() Pontifical Catholic University of SΓ£o Paulo (PUC-SP)
[**School:**]() Faculty of Interdisciplinary Studies
[**Program:**]() Humanistic AI and Data Science
[**Semester:**]() 2nd Semester 2025
Professor: [***Professor Doctor in Mathematics Daniel Rodrigues da Silva***](https://www.linkedin.com/in/daniel-rodrigues-048654a5/)
####
[](https://github.com/sponsors/Quantum-Software-Development)
#
> [!IMPORTANT]
>
> β οΈ Heads Up
>
> * Projects and deliverables may be made [publicly available]() whenever possible.
> * The course emphasizes [**practical, hands-on experience**]() with real datasets to simulate professional consulting scenarios in the fields of **Data Analysis and Data Mining** for partner organizations and institutions affiliated with the university.
> * All activities comply with the [**academic and ethical guidelines of PUC-SP**]().
> * Any content not authorized for public disclosure will remain [**confidential**]() and securely stored in [private repositories]().
>
#
##### πΆ Prelude Suite no.1 (J. S. Bach) - [Sound Design Remix]()
https://github.com/user-attachments/assets/4ccd316b-74a1-4bae-9bc7-1c705be80498
#### πΊ For better resolution, watch the video on [YouTube.](https://youtu.be/_ytC6S4oDbM)
> [!TIP]
>
> This repository is a review of the Statistics course from the undergraduate program Humanities, AI and Data Science at PUC-SP.
>
> ### β **Access Data Mining [Main Repository](https://github.com/Quantum-Software-Development/1-Main_DataMining_Repository)**
>
>
## [Overview]()
This repository covers fundamental concepts and practical techniques in Data Mining focused on clustering (grouping by similarity), various types of regression for modeling data trends, and the crucial steps for data integration and preprocessing. Each section includes theoretical explanations, use case examples, mathematical formulations using LaTeX, and Python code snippets to assist practical understanding.
## [Table of Contents]()
- [Clustering](#clustering)
- [Regression Types](#regression-types)
- [Data Integration](#data-integration)
- [Data Redundancy and Duplicates](#data-redundancy-and-duplicates)
- [Data Conflicts](#data-conflicts)
- [Data Compression](#data-compression)
- [PCA - Principal Component Analysis](#pca)
- [Data Standardization](#data-standardization)
- [Data Normalization](#data-normalization)
## [Bibliography]()
[1](). **Castro, L. N. & Ferrari, D. G.** (2016). *Introduction to Data Mining: Basic Concepts, Algorithms, and Applications*. Saraiva.
[2](). **Ferreira, A. C. P. L. et al.** (2024). *Artificial Intelligence β A Machine Learning Approach*. 2nd Ed. LTC.
[3](). **Larson & Farber** (2015). *Applied Statistics*. Pearson.
## π [Let the data flow... Ping Me !](mailto:fabicampanari@proton.me)
####
πΈΰΉ My Contacts [Hub](https://linktr.ee/fabianacampanari)
###

ββββββββββββββ πβ ββββββββββββββ
β£β’β€ Back to Top
#
######
Copyright 2025 Quantum Software Development. Code released under the [MIT License license.](https://github.com/Quantum-Software-Development/Math/blob/3bf8270ca09d3848f2bf22f9ac89368e52a2fb66/LICENSE)