Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/quantumxiaol/yolov8-small-target-detection

基于yolov8实现小目标检测,在NWPU VHR-10和DOTA上测试
https://github.com/quantumxiaol/yolov8-small-target-detection

Last synced: 2 months ago
JSON representation

基于yolov8实现小目标检测,在NWPU VHR-10和DOTA上测试

Awesome Lists containing this project

README

        

# yolov8-small-target-detection

基于yolov8实现小目标检测,在NWPU VHR-10和DOTA上测试

使用Gradio-YOLOv8-Det进行可视化

yolov8 https://github.com/ultralytics/ultralytics

Gradio-YOLOv8-Det https://gitee.com/CV_Lab/gradio-yolov8-det

可视化需要执行gradio_yolov8_det下的gradio_yolov8_det_v2.py。

根据要求修改/model_config/model_name_all.yaml以添加自己的模型权值

修改/cls_name/cls_name_zh.yaml以修改目标检测的标签值

文件结构

|- yolov8 解压yolov8源代码

|-datasets 储存数据集

|--DOTAs

|--NWPUVHR

|-gradio_yolov8_det 结果可视化

|-yolov8fornwpuvhr.pt 在NWPU VHR-10上训练的一个权值

|-yolov8.yaml 配置网络,修改nc

|-train.py 在NWPU VHR-10训练模型

|-train_DOTAs.py 在DOTA训练模型

|-pred.py 评估模型

github.com/ultralytics/ultralytics

|-docker

|-docs

|-docker

|-examples

|-ultralytics

可视化示意
![gradio_yolov8_det](https://github.com/quantumxiaol/yolov8-small-target-detection/blob/main/png/gradio_yolov8_det_examples.png "gradio_yolov8_det")
原图
![gradio_yolov8_det](https://github.com/quantumxiaol/yolov8-small-target-detection/blob/main/png/img_nwpu_test_raw.jpg "gradio_yolov8_det")
检测结果
![gradio_yolov8_det](https://github.com/quantumxiaol/yolov8-small-target-detection/blob/main/png/img_nwpu_test_det.jpg "gradio_yolov8_det")

在NWPU VHR-10数据集表现

![NWPU val_pred](https://github.com/quantumxiaol/yolov8-small-target-detection/blob/main/png/img_nwpu_val_pred.jpg "NWPU val_pred")
原标签
![NWPU val_labels](https://github.com/quantumxiaol/yolov8-small-target-detection/blob/main/png/img_nwpu_val_labels.jpg "NWPU val_labels")

在DOTA数据集表现

![DOTA val_pred](https://github.com/quantumxiaol/yolov8-small-target-detection/blob/main/png/img_dota_val_batch0_pred.jpg "DOTA val_pred")
原标签
![DOTA val_labels](https://github.com/quantumxiaol/yolov8-small-target-detection/blob/main/png/img_dota_val_batch0_labels.jpg "DOTA val_labels")

目前来看在DOTA上表现不好,这可能是由于在DOTA上进行标签转换时没有处理好旋转框,导致模型不能很好的学到较小的目标。
下面是修改了标签计算方法的训练结果。
![DOTA val_pred](https://github.com/quantumxiaol/yolov8-small-target-detection/blob/main/png/img_dota_val_batch1_pred_v2.jpg "DOTA val_pred")
原标签
![DOTA val_labels](https://github.com/quantumxiaol/yolov8-small-target-detection/blob/main/png/img_dota_val_batch1_labels_v2.jpg "DOTA val_labels")

Gradio-YOLOv8-Det的原作者 曾逸夫, (2024) Gradio YOLOv8 Det (Version 2.1.0).https://gitee.com/CV_Lab/gradio-yolov8-det.git.