Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/qubvel/segmentation_models

Segmentation models with pretrained backbones. Keras and TensorFlow Keras.
https://github.com/qubvel/segmentation_models

densenet efficientnet fpn image-segmentation keras keras-examples keras-models keras-tensorflow linknet mobilenet pre-trained pretrained pspnet resnet resnext segmentation segmentation-models tensorflow tensorflow-keras unet

Last synced: 6 days ago
JSON representation

Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Awesome Lists containing this project

README

        

.. raw:: html



Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow.








**The main features** of this library are:

- High level API (just two lines of code to create model for segmentation)
- **4** models architectures for binary and multi-class image segmentation
(including legendary **Unet**)
- **25** available backbones for each architecture
- All backbones have **pre-trained** weights for faster and better
convergence
- Helpful segmentation losses (Jaccard, Dice, Focal) and metrics (IoU, F-score)

**Important note**

Some models of version ``1.*`` are not compatible with previously trained models,
if you have such models and want to load them - roll back with:

$ pip install -U segmentation-models==0.2.1

Table of Contents
~~~~~~~~~~~~~~~~~
- `Quick start`_
- `Simple training pipeline`_
- `Examples`_
- `Models and Backbones`_
- `Installation`_
- `Documentation`_
- `Change log`_
- `Citing`_
- `License`_

Quick start
~~~~~~~~~~~
Library is build to work together with Keras and TensorFlow Keras frameworks

.. code:: python

import segmentation_models as sm
# Segmentation Models: using `keras` framework.

By default it tries to import ``keras``, if it is not installed, it will try to start with ``tensorflow.keras`` framework.
There are several ways to choose framework:

- Provide environment variable ``SM_FRAMEWORK=keras`` / ``SM_FRAMEWORK=tf.keras`` before import ``segmentation_models``
- Change framework ``sm.set_framework('keras')`` / ``sm.set_framework('tf.keras')``

You can also specify what kind of ``image_data_format`` to use, segmentation-models works with both: ``channels_last`` and ``channels_first``.
This can be useful for further model conversion to Nvidia TensorRT format or optimizing model for cpu/gpu computations.

.. code:: python

import keras
# or from tensorflow import keras

keras.backend.set_image_data_format('channels_last')
# or keras.backend.set_image_data_format('channels_first')

Created segmentation model is just an instance of Keras Model, which can be build as easy as:

.. code:: python

model = sm.Unet()

Depending on the task, you can change the network architecture by choosing backbones with fewer or more parameters and use pretrainded weights to initialize it:

.. code:: python

model = sm.Unet('resnet34', encoder_weights='imagenet')

Change number of output classes in the model (choose your case):

.. code:: python

# binary segmentation (this parameters are default when you call Unet('resnet34')
model = sm.Unet('resnet34', classes=1, activation='sigmoid')

.. code:: python

# multiclass segmentation with non overlapping class masks (your classes + background)
model = sm.Unet('resnet34', classes=3, activation='softmax')

.. code:: python

# multiclass segmentation with independent overlapping/non-overlapping class masks
model = sm.Unet('resnet34', classes=3, activation='sigmoid')


Change input shape of the model:

.. code:: python

# if you set input channels not equal to 3, you have to set encoder_weights=None
# how to handle such case with encoder_weights='imagenet' described in docs
model = Unet('resnet34', input_shape=(None, None, 6), encoder_weights=None)

Simple training pipeline
~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: python

import segmentation_models as sm

BACKBONE = 'resnet34'
preprocess_input = sm.get_preprocessing(BACKBONE)

# load your data
x_train, y_train, x_val, y_val = load_data(...)

# preprocess input
x_train = preprocess_input(x_train)
x_val = preprocess_input(x_val)

# define model
model = sm.Unet(BACKBONE, encoder_weights='imagenet')
model.compile(
'Adam',
loss=sm.losses.bce_jaccard_loss,
metrics=[sm.metrics.iou_score],
)

# fit model
# if you use data generator use model.fit_generator(...) instead of model.fit(...)
# more about `fit_generator` here: https://keras.io/models/sequential/#fit_generator
model.fit(
x=x_train,
y=y_train,
batch_size=16,
epochs=100,
validation_data=(x_val, y_val),
)

Same manipulations can be done with ``Linknet``, ``PSPNet`` and ``FPN``. For more detailed information about models API and use cases `Read the Docs `__.

Examples
~~~~~~~~
Models training examples:
- [Jupyter Notebook] Binary segmentation (`cars`) on CamVid dataset `here `__.
- [Jupyter Notebook] Multi-class segmentation (`cars`, `pedestrians`) on CamVid dataset `here `__.

Models and Backbones
~~~~~~~~~~~~~~~~~~~~
**Models**

- `Unet `__
- `FPN `__
- `Linknet `__
- `PSPNet `__

============= ==============
Unet Linknet
============= ==============
|unet_image| |linknet_image|
============= ==============

============= ==============
PSPNet FPN
============= ==============
|psp_image| |fpn_image|
============= ==============

.. _Unet: https://github.com/qubvel/segmentation_models/blob/readme/LICENSE
.. _Linknet: https://arxiv.org/abs/1707.03718
.. _PSPNet: https://arxiv.org/abs/1612.01105
.. _FPN: http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf

.. |unet_image| image:: https://github.com/qubvel/segmentation_models/blob/master/images/unet.png
.. |linknet_image| image:: https://github.com/qubvel/segmentation_models/blob/master/images/linknet.png
.. |psp_image| image:: https://github.com/qubvel/segmentation_models/blob/master/images/pspnet.png
.. |fpn_image| image:: https://github.com/qubvel/segmentation_models/blob/master/images/fpn.png

**Backbones**

.. table::

============= =====
Type Names
============= =====
VGG ``'vgg16' 'vgg19'``
ResNet ``'resnet18' 'resnet34' 'resnet50' 'resnet101' 'resnet152'``
SE-ResNet ``'seresnet18' 'seresnet34' 'seresnet50' 'seresnet101' 'seresnet152'``
ResNeXt ``'resnext50' 'resnext101'``
SE-ResNeXt ``'seresnext50' 'seresnext101'``
SENet154 ``'senet154'``
DenseNet ``'densenet121' 'densenet169' 'densenet201'``
Inception ``'inceptionv3' 'inceptionresnetv2'``
MobileNet ``'mobilenet' 'mobilenetv2'``
EfficientNet ``'efficientnetb0' 'efficientnetb1' 'efficientnetb2' 'efficientnetb3' 'efficientnetb4' 'efficientnetb5' efficientnetb6' efficientnetb7'``
============= =====

.. epigraph::
All backbones have weights trained on 2012 ILSVRC ImageNet dataset (``encoder_weights='imagenet'``).

Installation
~~~~~~~~~~~~

**Requirements**

1) python 3
2) keras >= 2.2.0 or tensorflow >= 1.13
3) keras-applications >= 1.0.7, <=1.0.8
4) image-classifiers == 1.0.*
5) efficientnet == 1.0.*

**PyPI stable package**

.. code:: bash

$ pip install -U segmentation-models

**PyPI latest package**

.. code:: bash

$ pip install -U --pre segmentation-models

**Source latest version**

.. code:: bash

$ pip install git+https://github.com/qubvel/segmentation_models

Documentation
~~~~~~~~~~~~~
Latest **documentation** is avaliable on `Read the
Docs `__

Change Log
~~~~~~~~~~
To see important changes between versions look at CHANGELOG.md_

Citing
~~~~~~~~

.. code::

@misc{Yakubovskiy:2019,
Author = {Pavel Iakubovskii},
Title = {Segmentation Models},
Year = {2019},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/qubvel/segmentation_models}}
}

License
~~~~~~~
Project is distributed under `MIT Licence`_.

.. _CHANGELOG.md: https://github.com/qubvel/segmentation_models/blob/master/CHANGELOG.md
.. _`MIT Licence`: https://github.com/qubvel/segmentation_models/blob/master/LICENSE