Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/qubvel/ttach

Image Test Time Augmentation with PyTorch!
https://github.com/qubvel/ttach

augmentation classification computer-vision deep-learning keypoint-detection pytorch segmentation test-time-augmentation tta tta-wrapper

Last synced: 5 days ago
JSON representation

Image Test Time Augmentation with PyTorch!

Awesome Lists containing this project

README

        

# TTAch
Image Test Time Augmentation with PyTorch!

Similar to what Data Augmentation is doing to the training set, the purpose of Test Time Augmentation is to perform random modifications to the test images. Thus, instead of showing the regular, “clean” images, only once to the trained model, we will show it the augmented images several times. We will then average the predictions of each corresponding image and take that as our final guess [[1](https://towardsdatascience.com/test-time-augmentation-tta-and-how-to-perform-it-with-keras-4ac19b67fb4d)].
```
Input
| # input batch of images
/ / /|\ \ \ # apply augmentations (flips, rotation, scale, etc.)
| | | | | | | # pass augmented batches through model
| | | | | | | # reverse transformations for each batch of masks/labels
\ \ \ / / / # merge predictions (mean, max, gmean, etc.)
| # output batch of masks/labels
Output
```
## Table of Contents
1. [Quick Start](#quick-start)
2. [Transforms](#transforms)
3. [Aliases](#aliases)
4. [Merge modes](#merge-modes)
5. [Installation](#installation)

## Quick start

##### Segmentation model wrapping [[docstring](ttach/wrappers.py#L8)]:
```python
import ttach as tta
tta_model = tta.SegmentationTTAWrapper(model, tta.aliases.d4_transform(), merge_mode='mean')
```
##### Classification model wrapping [[docstring](ttach/wrappers.py#L52)]:
```python
tta_model = tta.ClassificationTTAWrapper(model, tta.aliases.five_crop_transform())
```

##### Keypoints model wrapping [[docstring](ttach/wrappers.py#L96)]:
```python
tta_model = tta.KeypointsTTAWrapper(model, tta.aliases.flip_transform(), scaled=True)
```
**Note**: the model must return keypoints in the format `torch([x1, y1, ..., xn, yn])`

## Advanced Examples
##### Custom transform:
```python
# defined 2 * 2 * 3 * 3 = 36 augmentations !
transforms = tta.Compose(
[
tta.HorizontalFlip(),
tta.Rotate90(angles=[0, 180]),
tta.Scale(scales=[1, 2, 4]),
tta.Multiply(factors=[0.9, 1, 1.1]),
]
)

tta_model = tta.SegmentationTTAWrapper(model, transforms)
```
##### Custom model (multi-input / multi-output)
```python
# Example how to process ONE batch on images with TTA
# Here `image`/`mask` are 4D tensors (B, C, H, W), `label` is 2D tensor (B, N)

for transformer in transforms: # custom transforms or e.g. tta.aliases.d4_transform()

# augment image
augmented_image = transformer.augment_image(image)

# pass to model
model_output = model(augmented_image, another_input_data)

# reverse augmentation for mask and label
deaug_mask = transformer.deaugment_mask(model_output['mask'])
deaug_label = transformer.deaugment_label(model_output['label'])

# save results
labels.append(deaug_mask)
masks.append(deaug_label)

# reduce results as you want, e.g mean/max/min
label = mean(labels)
mask = mean(masks)
```

## Transforms

| Transform | Parameters | Values |
|----------------|:-------------------------:|:---------------------------------:|
| HorizontalFlip | - | - |
| VerticalFlip | - | - |
| Rotate90 | angles | List\[0, 90, 180, 270] |
| Scale | scales
interpolation | List\[float]
"nearest"/"linear"|
| Resize | sizes
original_size
interpolation | List\[Tuple\[int, int]]
Tuple\[int,int]
"nearest"/"linear"|
| Add | values | List\[float] |
| Multiply | factors | List\[float] |
| FiveCrops | crop_height
crop_width | int
int |

## Aliases

- flip_transform (horizontal + vertical flips)
- hflip_transform (horizontal flip)
- d4_transform (flips + rotation 0, 90, 180, 270)
- multiscale_transform (scale transform, take scales as input parameter)
- five_crop_transform (corner crops + center crop)
- ten_crop_transform (five crops + five crops on horizontal flip)

## Merge modes
- mean
- gmean (geometric mean)
- sum
- max
- min
- tsharpen ([temperature sharpen](https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/107716#latest-624046) with t=0.5)

## Installation
PyPI:
```bash
$ pip install ttach
```
Source:
```bash
$ pip install git+https://github.com/qubvel/ttach
```

## Run tests

```bash
docker build -f Dockerfile.dev -t ttach:dev . && docker run --rm ttach:dev pytest -p no:cacheprovider
```