Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/quiteafancyemerald/geometry-dash-level-history-cli
This tool that allows you to graph or export level IDs from the game Geometry Dash on a monthly, weekly or yearly basis. It fetches approximate ID values attached to a certain date from the GDHistory API site.
https://github.com/quiteafancyemerald/geometry-dash-level-history-cli
gdscript geometry-dash geometrydash geometrydash-api python
Last synced: 1 day ago
JSON representation
This tool that allows you to graph or export level IDs from the game Geometry Dash on a monthly, weekly or yearly basis. It fetches approximate ID values attached to a certain date from the GDHistory API site.
- Host: GitHub
- URL: https://github.com/quiteafancyemerald/geometry-dash-level-history-cli
- Owner: QuiteAFancyEmerald
- License: mit
- Created: 2023-12-28T04:57:39.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-02-19T06:59:58.000Z (11 months ago)
- Last Synced: 2024-11-19T12:58:50.922Z (2 months ago)
- Topics: gdscript, geometry-dash, geometrydash, geometrydash-api, python
- Language: Python
- Homepage:
- Size: 66.4 KB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Geometry Dash ID History Graphing Utility
Upon researching for a video I created a tool that allows you to graph level IDs from the game Geometry Dash on a monthly, weekly or yearly basis. It fetches approximate ID values attached to a certain date from the GDHistory API site.This tool uses **matplotlib** for the graph view and also supports an organized CSV export table for those who wish to export data.
**API:** https://history.geometrydash.eu/
**Interaction:** https://history.geometrydash.eu/api/v1/date/date/{random_date}
![Geometry ID History Graph Utility SS](example.png)
### Configuration
```
start_date = datetime(2013, 7, 1)
end_date = datetime.now()
date_list = [generate_random_date(date.year, date.month) for date in pd.date_range(start=start_date, end=end_date, freq='MS')]
```### Setup
1) Clone this repository
2) Run `pip install -r requirements.txt`
3) Run either the main `run.py` file for a graph view or `spreadsheet.py` for a quick CSV export
4) Tweak the configuration as needed for use case