Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/qupath/i2k-qupath-for-python-programmers
https://github.com/qupath/i2k-qupath-for-python-programmers
Last synced: 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/qupath/i2k-qupath-for-python-programmers
- Owner: qupath
- Created: 2024-10-10T15:09:46.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2024-10-28T08:25:31.000Z (3 months ago)
- Last Synced: 2024-10-28T10:16:03.262Z (3 months ago)
- Language: Jupyter Notebook
- Size: 1.17 MB
- Stars: 2
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# QuPath for Python programmers 🐍
These are the notebooks and associated files for the i2k 2024
**QuPath for Python programmers** workshop.This is a brief introduction to [QuBaLab](https://github.com/qupath/qubalab)
and the [QuPath Py4J extension](https://github.com/qupath/qupath-extension-py4j),
a new way to quickly link Python and QuPath.## Running the notebooks
1. Download the latest QuPath v0.6.0 release candidate from the [github releases page](https://github.com/qupath/qupath/releases).
2. Download the [QuPath project](https://github.com/qupath/i2k-qupath-for-python-programmers/releases/download/v0.1.0/i2k-qupath-python-project.zip)
for this workshop.
3. Unzip the project in the i2k-qupath-for-python-programmers directory
4. Create a conda environment (bash):
1. `conda create -n i2k-qupath-python python=3.10`
2. `conda activate i2k-qupath-python`
3. Install the requirements, either by
- `pip install -r requirements.txt`, or
- `pip install instanseg-torch git+https://github.com/qupath/qubalab.git jupyter ipython leidenalg igraph umap-learn`.
5. Open QuPath v0.6.0
6. Start a py4j gateway with default parameters
7. Open the `i2k-qupath-python-project` in QuPath
8. Open `HE_Hamamatsu.tiff` in QuPath
9. Start a jupyter session using the virtual environment from earlier
10. Run the `qupath-for-python-programmers.ipynb` notebook
11. Open `patient_test_2.ome.tiff` in QuPath and select the annotation
12. Run the `clustering-objects.ipynb` notebook