Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/qwj/lazy-python
lazy-python is a Python lazy programming library with implicit parallel and a bundle of optimizations. It aims to make functional programming in Python easier.
https://github.com/qwj/lazy-python
Last synced: about 2 months ago
JSON representation
lazy-python is a Python lazy programming library with implicit parallel and a bundle of optimizations. It aims to make functional programming in Python easier.
- Host: GitHub
- URL: https://github.com/qwj/lazy-python
- Owner: qwj
- Created: 2014-05-23T03:56:08.000Z (over 10 years ago)
- Default Branch: master
- Last Pushed: 2014-05-23T07:52:57.000Z (over 10 years ago)
- Last Synced: 2023-12-15T16:19:31.562Z (about 1 year ago)
- Language: Python
- Homepage:
- Size: 138 KB
- Stars: 5
- Watchers: 2
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
lazy-python
===========A Python lazy programming library with implicit parallel and other
optimizations for Functional Programming.Overview
-----------*Lazy Evaluation* is among useful features in Functional Programming.
This tool help make lazy evaluation in Python easier. The expression
is saved in directed graph and evaluated when necessary. The process
of evaluation leverage multicore (``multiprocessing`` library in Python)
and graph cut algorithm to compute the results in parallel.Usage
------------ *Lazy(func)*
Return a new lazy function that don't do eager call. Use .eval() to
compute the whole expression in parallel.
- *@lazy*
Useful decorator for function that want to be lazy in definition.
- *Lazy.set_cores(num)*
Set the actual CPU cores in parallel computing. The default value is
*multiprocessing.cpu_count()*Examples
-----------This example illustrate how to calculate *Fibnoacci* by Lazy Evalution and
the cache mechanism of pure function call with the same parameters. By adding
parameter "*debug=True*", it is easy to show the evaluation process step by step.>>> from lazy import Lazy
>>> lazy_int = Lazy(int, debug=True)
>>> def fib(n):
... return lazy_int(n) if n <= 1 else fib(n-1) + fib(n-2)
...
>>> a = fib(10)
>>> a
(((((((((1+int(0))+1)+(1+int(0)))+((1+int(0))+1))+(((1+int(0))+1)+(1+int(0))))+((((1+int(0))+1)+(1+int(0)))+((1+int(0))+1)))+(((((1+int(0))+1)+(1+int(0)))+((1+int(0))+1))+(((1+int(0))+1)+(1+int(0)))))+((((((1+int(0))+1)+(1+int(0)))+((1+int(0))+1))+(((1+int(0))+1)+(1+int(0))))+((((1+int(0))+1)+(1+int(0)))+((1+int(0))+1))))+(((((((1+int(0))+1)+(1+int(0)))+((1+int(0))+1))+(((1+int(0))+1)+(1+int(0))))+((((1+int(0))+1)+(1+int(0)))+((1+int(0))+1)))+(((((1+int(0))+1)+(1+int(0)))+((1+int(0))+1))+(((1+int(0))+1)+(1+int(0))))))
>>> a.eval()
int(0) == 0
(1+0) == 1
(1+1) == 2
(2+1) == 3
(3+2) == 5
(5+3) == 8
(8+5) == 13
(13+8) == 21
(21+13) == 34
(34+21) == 55
55
>>> a
55
>>> b = fib(11)
>>> b
(55+34)
>>> b.eval()
(55+34) == 89
89Lazy Evaluation uses implicit parallel by *multiprocessing*. The following
example shows how the implicit parallel works by using decorator *lazy*.from lazy import lazy
import time
def f(name):
print('Enter', name)
time.sleep(5)
print('Leave', name)
@lazy
def f1():
f('f1')
return 1
@lazy
def f2():
f('f2')
return 2
@lazy
def f3():
f('f3')
return 3
@lazy
def f4():
f('f4')
return 4
if __name__ == '__main__':
s = f1()*f2()+f3()*f4()
print(s)
s.eval()
print(s)
$ time python3 test_parallel.py
((f1()*f2())+(f3()*f4()))
Enter f1
Enter f2
Enter f3
Enter f4
Leave f1
Leave f3
Leave f4
Leave f2
14
real 0m5.173s
user 0m0.111s
sys 0m0.049sYou can easily change the number of CPU cores in parallel computing by adding
*Lazy.set_cores(num)*. You can completely disable parallel by *Lazy.set_cores(0)*.$ time python3 test_parallel_with_zero_cores.py
((f1()*f2())+(f3()*f4()))
Enter f2
Leave f2
Enter f1
Leave f1
Enter f3
Leave f3
Enter f4
Leave f4
14
real 0m20.085s
user 0m0.055s
sys 0m0.016s