https://github.com/r-spatial/gstat
Spatial and spatio-temporal geostatistical modelling, prediction and simulation
https://github.com/r-spatial/gstat
Last synced: 8 months ago
JSON representation
Spatial and spatio-temporal geostatistical modelling, prediction and simulation
- Host: GitHub
- URL: https://github.com/r-spatial/gstat
- Owner: r-spatial
- License: gpl-2.0
- Created: 2015-12-21T14:31:08.000Z (almost 10 years ago)
- Default Branch: main
- Last Pushed: 2024-08-23T12:53:02.000Z (about 1 year ago)
- Last Synced: 2024-10-29T20:55:51.408Z (about 1 year ago)
- Language: C
- Homepage: http://r-spatial.github.io/gstat/
- Size: 38.7 MB
- Stars: 195
- Watchers: 19
- Forks: 49
- Open Issues: 49
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGES
- License: LICENSE
Awesome Lists containing this project
- awesome-open-geoscience - gstat
README
gstat
=====
[](https://github.com/r-spatial/gstat/actions/workflows/rcmdcheck.yml)
[](https://ci.appveyor.com/project/edzerpebesma/gstat)
[](http://www.gnu.org/licenses/gpl-2.0.html)
[](https://cran.r-project.org/package=gstat)
[](https://cran.r-project.org/web/checks/check_results_gstat.html)
[](http://www.r-pkg.org/pkg/gstat)
Spatial and spatio-temporal geostatistical modelling, prediction and simulation.
See:
* Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30: [683-691](http://www.sciencedirect.com/science/article/pii/S0098300404000676).
* Benedikt Gräler, Edzer Pebesma and Gerard Heuvelink, 2016. Spatio-Temporal Interpolation using gstat. The R Journal 8(1), [204-218](https://journal.r-project.org/archive/2016-1/na-pebesma-heuvelink.pdf)
The older publication,
* Pebesma, E.J. and C.G. Wesseling, 1998. Gstat,
a program for geostatistical modelling, prediction
and simulation. Computers & Geosciences 24 (1),
[17–31](http://www.sciencedirect.com/science/article/pii/S0098300497000824).
describes material that is now archived in branch [attic](https://github.com/r-spatial/gstat/tree/attic)
## Installing
Install either from CRAN with
``` r
install.packages("gstat")
```
or development version from GitHub with
``` r
library(remotes)
install_github("r-spatial/gstat")
```