Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ragibson/steganography
Least Significant Bit Steganography for bitmap images (.bmp and .png), WAV sound files, and byte sequences. Simple LSB Steganalysis (LSB extraction) for bitmap images.
https://github.com/ragibson/steganography
bitmap cryptography ctf steganalysis steganography wav
Last synced: 4 days ago
JSON representation
Least Significant Bit Steganography for bitmap images (.bmp and .png), WAV sound files, and byte sequences. Simple LSB Steganalysis (LSB extraction) for bitmap images.
- Host: GitHub
- URL: https://github.com/ragibson/steganography
- Owner: ragibson
- License: mit
- Created: 2015-09-25T20:48:45.000Z (about 9 years ago)
- Default Branch: master
- Last Pushed: 2024-10-09T01:36:42.000Z (about 1 month ago)
- Last Synced: 2024-10-28T02:18:16.015Z (17 days ago)
- Topics: bitmap, cryptography, ctf, steganalysis, steganography, wav
- Language: Python
- Homepage:
- Size: 209 KB
- Stars: 568
- Watchers: 12
- Forks: 92
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
- Authors: AUTHORS.md
Awesome Lists containing this project
README
# Steganography
![Steganography illustration](readme_illustration.png)
# Table of Contents
* [Installation](#installation)
* [Byte Sequence Manipulation](#byte-sequence-manipulation)
* [WavSteg](#wavsteg)
* [LSBSteg](#lsbsteg)
* [StegDetect](#stegdetect)If you are unfamiliar with steganography techniques, I have also written a
basic overview of the field in
[Steganography: Hiding Data Inside Data](https://ryanagibson.com/posts/steganography-intro/).## Installation
This project is on [PyPI](https://pypi.org/project/stego-lsb/) and can be
installed withpip install stego-lsb
Alternatively, you can install it from this repository directly:
git clone https://github.com/ragibson/Steganography
cd Steganography
python3 setup.py installAfter installation, use the `stegolsb` command in the terminal or import
functions from `stego_lsb` in your code.## Byte Sequence Manipulation
bit_manipulation provides the ability to (quickly) interleave the bytes of a
payload directly in the least significant bits of a carrier byte sequence.Specifically, it contains four primary functions:
# Interleave the bytes of payload into the num_lsb LSBs of carrier.
lsb_interleave_bytes(carrier, payload, num_lsb, truncate=False)# Deinterleave num_bits bits from the num_lsb LSBs of carrier.
lsb_deinterleave_bytes(carrier, num_bits, num_lsb)# Runs lsb_interleave_bytes with a List[uint8] carrier.
lsb_interleave_list(carrier, payload, num_lsb)# Runs lsb_deinterleave_bytes with a List[uint8] carrier.
lsb_deinterleave_list(carrier, num_bits, num_lsb)Running `bit_manipulation.py`, calling its `test()` function directly, or
running `stegolsb test` should produce output similar toTesting 1.0 MB payload -> 10.0 MB carrier...
Progress: [################################]
----------------------------------------
| # LSBs | Encode Rate | Decode rate |
| 1 | 60.6 MB/s | 95.9 MB/s |
| 2 | 56.6 MB/s | 52.7 MB/s |
| 3 | 82.5 MB/s | 77.4 MB/s |
| 4 | 112.4 MB/s | 105.9 MB/s |
| 5 | 135.9 MB/s | 129.8 MB/s |
| 6 | 159.9 MB/s | 152.4 MB/s |
| 7 | 181.7 MB/s | 174.6 MB/s |
| 8 | 372.8 MB/s | 1121.8 MB/s |
----------------------------------------## WavSteg
WavSteg uses least significant bit steganography to hide a file in the samples
of a .wav file.For each sample in the audio file, we overwrite the least significant bits with
the data from our file.### How to use
WavSteg requires Python 3
Run WavSteg with the following command line arguments:
Command Line Arguments:
-h, --hide To hide data in a sound file
-r, --recover To recover data from a sound file
-i, --input TEXT Path to a .wav file
-s, --secret TEXT Path to a file to hide in the sound file
-o, --output TEXT Path to an output file
-n, --lsb-count INTEGER How many LSBs to use [default: 2]
-b, --bytes INTEGER How many bytes to recover from the sound file
--help Show this message and exit.Example:
$ stegolsb wavsteg -h -i sound.wav -s file.txt -o sound_steg.wav -n 1
# OR
$ stegolsb wavsteg -r -i sound_steg.wav -o output.txt -n 1 -b 1000### Hiding Data
Hiding data uses the arguments -h, -i, -s, -o, and -n.
The following command would hide the contents of file.txt into sound.wav and
save the result as sound_steg.wav. The command also outputs how many bytes have
been used out of a theoretical maximum.Example:
$ stegolsb wavsteg -h -i sound.wav -s file.txt -o sound_steg.wav -n 2
Using 2 LSBs, we can hide 6551441 bytes
Files read in 0.01s
5589889 bytes hidden in 0.24s
Output wav written in 0.03sIf you attempt to hide too much data, WavSteg will print the minimum number of
LSBs required to hide your data.### Recovering Data
Recovering data uses the arguments -r, -i, -o, -n, and -b
The following command would recover the hidden data from sound_steg.wav and
save it as output.txt. This requires the size in bytes of the hidden data to
be accurate or the result may be too short or contain extraneous data.Example:
$ stegolsb wavsteg -r -i sound_steg.wav -o output.txt -n 2 -b 5589889
Files read in 0.02s
Recovered 5589889 bytes in 0.18s
Written output file in 0.00s## LSBSteg
LSBSteg uses least significant bit steganography to hide a file in the color
information of an RGB image (.bmp or .png).For each color channel (e.g., R, G, and B) in each pixel of the image, we
overwrite the least significant bits of the color value with the data from our
file. In order to make recovering this data easier, we also hide the file size
of our input file in the first few color channels of the image.### How to use
You need Python 3 and Pillow, a fork of the Python Imaging Library (PIL).
Run LSBSteg with the following command line arguments:
Command Line Arguments:
-h, --hide To hide data in an image file
-r, --recover To recover data from an image file
-a, --analyze Print how much data can be hidden within an image [default: False]
-i, --input TEXT Path to an bitmap (.bmp or .png) image
-s, --secret TEXT Path to a file to hide in the image
-o, --output TEXT Path to an output file
-n, --lsb-count INTEGER How many LSBs to use [default: 2]
-c, --compression INTEGER RANGE
1 (best speed) to 9 (smallest file size) [default: 1]
--help Show this message and exit.Example:
$ stegolsb steglsb -a -i input_image.png -s input_file.zip -n 2
# OR
$ stegolsb steglsb -h -i input_image.png -s input_file.zip -o steg.png -n 2 -c 1
# OR
$ stegolsb steglsb -r -i steg.png -o output_file.zip -n 2### Analyzing
Before hiding data in an image, it can be useful to see how much data can be
hidden. The following command will achieve this, producing output similar to$ stegolsb steglsb -a -i input_image.png -s input_file.zip -n 2
Image resolution: (2000, 1100, 3)
Using 2 LSBs, we can hide: 1650000 B
Size of input file: 1566763 B
File size tag: 3 B### Hiding Data
The following command will hide data in the input image and write the result to
the steganographed image, producing output similar to$ stegolsb steglsb -h -i input_image.png -s input_file.zip -o steg.png -n 2 -c 1
Files read in 0.26s
1566763 bytes hidden in 0.31s
Image overwritten in 0.27s### Recovering Data
The following command will recover data from the steganographed image and write
the result to the output file, producing output similar to$ stegolsb steglsb -r -i steg.png -o output_file.zip -n 2
Files read in 0.30s
1566763 bytes recovered in 0.28s
Output file written in 0.00s## StegDetect
StegDetect provides one method for detecting simple steganography in images.
### How to Use
You need Python 3 and Pillow, a fork of the Python Imaging Library (PIL).
Run StegDetect with the following command line arguments:
Command Line Arguments:
-i, --input TEXT Path to an image
-n, --lsb-count INTEGER How many LSBs to display [default: 2]
--help Show this message and exit.### Showing the Least Significant Bits of an Image
We sum the least significant n bits of the RGB color channels for each pixel
and normalize the result to the range 0-255. This value is then applied to each
color channel for the pixel. Where n is the number of least significant bits to
show, the following command will save the resulting image, appending "_nLSBs"
to the file name, and will produce output similar to the following:$ stegolsb stegdetect -i input_image.png -n 2
Runtime: 0.63s