An open API service indexing awesome lists of open source software.

https://github.com/rahulsamant37/daily-task

DAILY-TASK: My Learning & Development Journey repository documenting my growth in MLOps and AI Engineering. It serves as both a portfolio and knowledge base, showcasing production-ready ML pipelines and core Python development practices. With projects on MLOps, AgenticAI, each commit reflects my continuous learning and practical implementations.
https://github.com/rahulsamant37/daily-task

aws-apigateway aws-ec2 aws-lambda aws-s3 chromadb faiss-vector-database fastapi huggingface langchain-python langgraph-python mlflow uvicorn-nginx

Last synced: about 2 months ago
JSON representation

DAILY-TASK: My Learning & Development Journey repository documenting my growth in MLOps and AI Engineering. It serves as both a portfolio and knowledge base, showcasing production-ready ML pipelines and core Python development practices. With projects on MLOps, AgenticAI, each commit reflects my continuous learning and practical implementations.

Awesome Lists containing this project

README

        

# πŸš€ DAILY-TASK: My Learning & Development Journey
> *"A repository that captures my growth across MLOps, AI Engineering, and Full Stack Development - where every commit is a step forward."*

[![MLOps](https://img.shields.io/badge/MLOps-Active-brightgreen)]()
[![AI](https://img.shields.io/badge/Agentic--AI-Exploring-blue)]()
[![Python](https://img.shields.io/badge/Python-DSA-orange)]()

---


Development Journey Banner

## πŸ’‘ About This Repository
This repository documents my learning journey and practical implementations across various domains. It serves as both a portfolio and a knowledge base, containing:
- **MLOps Projects**: Production-ready machine learning implementations
- **AI Engineering**: Cutting-edge work with Agentic AI and RAG systems
- **Core Development**: DSA practice and Python fundamentals

---

## πŸ—‚οΈ Repository Structure
### πŸ“Š MLOps
- **MLflow Projects**: Production ML pipeline implementations
- **DLMLFLOW**: Deep learning with MLflow integration
- **Model Tracking**: Experiment monitoring and version control

### πŸ€– Agentic-AI
- **RAG Systems**: Implementation of Retrieval Augmented Generation
- **LangChain Integration**: Advanced language model applications
- **Tools & Utilities**: Custom AI tool development

### πŸ’» Python Development
- **DSA Practice**: Data structures and algorithms implementation
- **Problem Solving**: Coding challenges and solutions
- **Best Practices**: Clean code and optimization techniques

---

## πŸ” Key Projects & Implementations
### MLOps Pipeline
```python
# MLflow experiment tracking and model deployment
mlflow.set_tracking_uri("sqlite:///mlflow.db")
mlflow.set_experiment("ml-production")
with mlflow.start_run():
mlflow.sklearn.log_model(model, "model")
```

### Agentic AI Systems
```python
# Advanced RAG implementation
from langchain_core.prompts import PromptTemplate
from langchain_community.vectorstores import FAISS
# ...implementing intelligent document retrieval
```

---

## πŸ› οΈ Technology Stack
```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ AI/ML β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”‚LangChain β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚Data β”‚ β”‚MLflow β”‚ β”‚Tools β”‚
β”‚Python │───│HuggingFace │───│Jupyter β”‚
β”‚SQL β”‚ β”‚Transformers β”‚ β”‚Git β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ Frameworks β”‚
β”‚ FastAPI β”‚
β”‚ Sklearn β”‚
β”‚ PyTorch β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

---

## πŸ“ˆ Learning Progress
- **MLOps**: Implementing production-grade ML pipelines
- **AI Engineering**: Building advanced RAG systems and agentic AI
- **Python**: Mastering DSA and backend development
- **Best Practices**: CI/CD, testing, and documentation

---

## 🎯 Current Focus Areas
1. **MLOps Excellence**
- Model versioning and deployment
- Experiment tracking
- Pipeline automation
2. **AI Engineering**
- Advanced RAG architectures
- LLM integration
- Custom tool development
3. **Core Development**
- System design
- Clean code practices

---

## 🀝 Connect & Collaborate
I'm always interested in discussing:
- ML/AI implementations
- Production system architecture
- Best practices in software engineering

πŸ“§ Reach out at: [[email protected]](mailto:[email protected])
πŸ”— LinkedIn: [linkedin.com/in/rahul-samant-kb37](https://www.linkedin.com/in/rahul-samant-kb37/)

---

*"Building tomorrow's solutions, one commit at a time."*