Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/rahulsm20/marketing-sentiment-analysis


https://github.com/rahulsm20/marketing-sentiment-analysis

Last synced: 6 days ago
JSON representation

Awesome Lists containing this project

README

        

# Marketing Strategy Optimization using Sentiment Analysis

### Introduction

A sentiment analysis project driven by real time data collection and a combination of CNN-LSTM architecture.

## Index

- [Prerequisites](#prerequisites)
- [Setup](#setup)
- [System Design](#system-design)

## Prerequisites

- [Node](https://nodejs.org/en/download/current)
- [Python (>=3.10)](https://www.python.org/downloads/)
- [Python Extension (VSCode)](https://marketplace.visualstudio.com/items?itemName=ms-python.python)
- [Jupyter Notebook Extension (VSCode)](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter)
- [Docker (Optional)](https://www.docker.com/)

## Setup

### Setup Notebook

- Create virtual environment

```
python -m venv venv
```

- Enter virtual environment

- Bash
```
source venv/bin/activate
```
- Powershell

```
.\venv\Scripts\activate
```

- Install requirements

```
pip install -r requirements.txt
```

## Setup

#### Scraping Service

```
cd scraping-service
```

- Install modules

```
npm install
```

or

```
npm i
```

- Setup environment variables

$ scraping-service/.env

```
MONGO_URL=
API_KEY=
POSTGRES_URL=
```

* Starting the servers
$ scraping-service
```
npm run dev
```

#### Generation Service
```
cd generation-service
```
- Install Packages

```
pip -r requirements.txt
```

$ generation-service/.env

```
GEMINI_API_KEY=
```
$ generation-service
```
uvicorn main:app --host 0.0.0.0 --port 8000
```
#### Setup Client
- Setup environment variables
```
VITE_AUTH0_CLIENT_ID=
VITE_AUTH0_DOMAIN=
VITE_SCRAPING_SERVICE_URL=http://localhost:5000
VITE_GENERATION_SERVICE_URL=http://localhost:8000
VITE_CLIENT_URL= http://localhost:5173/
VITE_SERVER_URL=http://localhost:5000
```
$ client
```
npm i && npm run dev
```
### Using Docker
$ .
```
docker compose up
```
### System Design
![system](https://github.com/rahulsm20/marketing-sentiment-analysis/assets/77540672/06703c25-fc15-4b79-aa33-c4e5964ca174)