https://github.com/ram81/ac-vaegan-pytorch
Implementation of a Conditional Variational Auto-Encoder GAN in pytorch
https://github.com/ram81/ac-vaegan-pytorch
Last synced: 3 months ago
JSON representation
Implementation of a Conditional Variational Auto-Encoder GAN in pytorch
- Host: GitHub
- URL: https://github.com/ram81/ac-vaegan-pytorch
- Owner: Ram81
- Created: 2019-10-02T06:53:04.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2021-09-21T22:32:44.000Z (over 3 years ago)
- Last Synced: 2025-03-17T20:43:45.973Z (3 months ago)
- Language: Python
- Homepage:
- Size: 20.5 KB
- Stars: 43
- Watchers: 2
- Forks: 6
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
# ACVAEGAN
An approach of imposing a condition on VAEGAN through the use of an auxiliary classifier.## Description
- Goal: To build a Conditional VAEGAN by employing an Auxiliary Classifier.
- Architecture:

- Dataset: WikiArt Emotions[1]
- Approaches:
1. Generate paintings conditioned on emotion (anger, fear, sadness, ..)
2. Generate paintings conditioned on category (cubism, surrealism, minimalism, ..)
3. Generate paintings conditioned on style (contemporary, modern, renaissance, ..)
## Plan
- ~Prepare dataset for the three approaches~
- ~CSV files containing (image-id, emotion); (image-id, category); (image-id, style)~
- Auxiliary Classifier Architecture
- Multilabel Classifier/Multiclass Classifier?
- Keras, Pytorch implementation
- Try on MNIST
## References
[1] WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art. Saif M. Mohammad and Svetlana Kiritchenko. In Proceedings of the 11th Edition of the Language Resources and Evaluation Conference (LREC-2018), May 2018, Miyazaki, Japan.[2] Autoencoding beyond pixels using a learned similarity metric https://arxiv.org/abs/1512.09300
[3] Conditional Image Synthesis With Auxiliary Classifier GANs https://arxiv.org/abs/1610.09585
[4] Twin Auxiliary Classifiers GAN https://arxiv.org/abs/1907.02690
[5] The Emotional GAN: Priming AdversarialGeneration of Art with Emotion https://nips2017creativity.github.io/doc/The_Emotional_GAN.pdf
[6] CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training https://arxiv.org/pdf/1703.10155.pdf
[7] Learning Structured Output Representationusing Deep Conditional Generative Models https://pdfs.semanticscholar.org/3f25/e17eb717e5894e0404ea634451332f85d287.pdf