Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rampal-punia/django-object-detection
Django object detection app using yolov5. Upload new custom model or use any of the yolov5 pre-trained model.
https://github.com/rampal-punia/django-object-detection
django django-application dropzonejs machine-learning machine-learning-library object object-detection object-detector python yolov5 yolov5-django
Last synced: 3 months ago
JSON representation
Django object detection app using yolov5. Upload new custom model or use any of the yolov5 pre-trained model.
- Host: GitHub
- URL: https://github.com/rampal-punia/django-object-detection
- Owner: rampal-punia
- License: apache-2.0
- Created: 2022-08-04T12:49:46.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2023-12-07T19:23:23.000Z (about 1 year ago)
- Last Synced: 2024-09-28T16:40:12.895Z (4 months ago)
- Topics: django, django-application, dropzonejs, machine-learning, machine-learning-library, object, object-detection, object-detector, python, yolov5, yolov5-django
- Language: Python
- Homepage:
- Size: 6.52 MB
- Stars: 50
- Watchers: 2
- Forks: 23
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: license
Awesome Lists containing this project
README
# Django Object Detection With YoloV5
## Demo of the WebApp
### A project to demonstrate easy integration of YoloV5 in Django WebApp
Note: This is not a full-fledged production ready app though can be scaled to work as one.
## Features of the WebApp
- Create/Edit ImageSets.
- Upload multiple images with dropzonejs to the selected ImageSet.
- Convert uploaded image size to 640 x 640. (For faster detection)
- Upload/update a custom pre-trained model.(If you have offline files of a model)
- YoloV5 models will download upon selection. (Active internet connection required for this step.)
- Detect object on an image with YoloV5/custom pre-trained model.### Note
An image with the name **default.png** in media folder is required for user-profile. Create media folder and add any image file with this name 'default.png'.
## Steps to use locally
```bash
clone the repo locallycreate virtual environment
# install dependencies
pip install django
pip install django-crispy-forms
pip install crispy-bootstrap4
pip install django-cleanup
pip install django-debug-toolbar
pip install celery
pip install yolov5# migrate
python manage.py migrate# create super user
python manage.py createsuperuser # (it may show an error page if no 'default.png' in media folder. See note above.)# run
python manage.py runserverlogin
# Login at the web address 127.0.0.1:8000 using the superuser credentials.Create ImageSet
# create an ImageSet first and then upload images into the ImageSet from ImageSet detail page.# On images list page click on detect object.
# select a YoloV5 model
# the YoloV5 dependencies and pre-trained model will start downloading.
```## Apps
- Detectobj
- images
- modelmanager
- users## Javascript library
- dropzonejs
- ekko-lightbox## Django starter template used
[DjangoAdvancedBoilerplate](https://github.com/CodingMantras/DjangoAdvancedBoilerplate)