Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ramyaragupathy/coursera
Solutions to Coursera learning tracks
https://github.com/ramyaragupathy/coursera
coursera stanford-machine-learning
Last synced: 13 days ago
JSON representation
Solutions to Coursera learning tracks
- Host: GitHub
- URL: https://github.com/ramyaragupathy/coursera
- Owner: ramyaragupathy
- Created: 2018-03-14T11:27:08.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-04-09T03:07:18.000Z (almost 7 years ago)
- Last Synced: 2024-11-07T15:52:55.346Z (2 months ago)
- Topics: coursera, stanford-machine-learning
- Language: Matlab
- Size: 20.1 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Coursera
Solutions to Coursera learning tracks
## Machine Learning
- Loading data: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/ex1.m#L41) | [Python](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/ex1.py#L38)
- Vectorisation of data: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/ex1.m#L42) | [Python](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/ex1.py#L39-L40)
- Plotting a graph from data: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/plotData.m) | [Python](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/ex1.py#L39-L40)### Linear Regression
- Cost Computation: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/computeCost.m) | [Python](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/ex1.py#L19-L22)
- Gradient Descent: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/gradientDescent.m) | [Python](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/ex1.py#L25-L34)
- Feature Normalisation: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/featureNormalize.m) | [Python](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/ex1_multi.py#L10-L22)
- Normal Equations: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/normalEqn.m) | [Python](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex1/ex1_multi.py#L25-L26)### Regularised linear regression
- Cost Computation: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex5/linearRegCostFunction.m) | Python
- Learning Curve: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex5/learningCurve.m) | Python
- Polynomial features: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex5/polyFeatures.m) | Python
- Validation curve: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex5/validationCurve.m) | Python### Logistic Regression
**Binary Classification**
- Sigmoid: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex2/sigmoid.m) | Python
- Cost Function: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex2/costFunction.m) | Python
- Prediction Function: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex2/predict.m) | Python
- Regularised cost: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex2/costFunctionReg.m) | Python**Multiclass classification**
- Regularised cost: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex3/lrCostFunction.m)| Python
- One-vs-all classifier training: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex3/oneVsAll.m) | Python
- One-vs-all classifier prediction: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex3/predictOneVsAll.m) | Python### Neural Networks
- Sigmoid Gradient: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex4/sigmoidGradient.m) | Python
- Prediction: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex3/predict.m) | Python
- Cost Function: [Octave](https://github.com/ramyaragupathy/Coursera/blob/master/Machine%20Learning/ex4/nnCostFunction.m) | Python