An open API service indexing awesome lists of open source software.

https://github.com/rap12/tensorflow-tutorials

Tutorial materials to help you understand how to use TensorFlow.
https://github.com/rap12/tensorflow-tutorials

machine-learning tensorflow tensorflow-tutorial tensorflow-tutorials

Last synced: 5 months ago
JSON representation

Tutorial materials to help you understand how to use TensorFlow.

Awesome Lists containing this project

README

          

# tensorflow-tutorials
Tutorial materials to help you understand how to use TensorFlow.

## Requirements
### Local machine set-up
- [TensorFlow](https://tensorflow.org/install) (Crafted for TensorFlow <=1.2)
- [Python 3.5](https://python.org)
- [Jupyter Notebook](https://jupyter.org)
### For cloud you can use:
- [Azure Notebook](https://notebooks.azure.com)

## Slides
1. [TensorFlow Introduction](https://drive.google.com/open?id=1FCTBLAtQAB3Ag8c5qqPGB2x57U2SV7whUOYVIQLjCdU)
2. [Low-Level: Linear Regression](https://drive.google.com/open?id=1FDmrFza0yaj3ExHrMvww4WT8HBFbO3bGdBDbOAeDWno)
3. [Low-Level: Logistic Regression using Iris Dataset](https://drive.google.com/open?id=1hBz-QpYP900Kfnh-Dojirw3xqdAvNqELXJPnJUWxbys)
4. Low-Level: Logistic Regression using MNIST Dataset (coming soon)
5. Low-Level: Multilayer Convolutional Network using MNIST Dataset (coming soon)
6. High-Level: Multilayer Convolutional Network using MNIST Dataset (coming soon)