Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/raphaelmeudec/deblur-gan
Keras implementation of "DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks"
https://github.com/raphaelmeudec/deblur-gan
gan generative-adversarial-networks image-deblurring keras
Last synced: 1 day ago
JSON representation
Keras implementation of "DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks"
- Host: GitHub
- URL: https://github.com/raphaelmeudec/deblur-gan
- Owner: RaphaelMeudec
- Created: 2018-02-12T13:57:22.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2022-11-22T04:29:42.000Z (about 2 years ago)
- Last Synced: 2024-10-12T04:49:06.077Z (3 months ago)
- Topics: gan, generative-adversarial-networks, image-deblurring, keras
- Language: Python
- Size: 79.2 MB
- Stars: 585
- Watchers: 20
- Forks: 245
- Open Issues: 46
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# What is this repo ?
This repository is a Keras implementation of [Deblur GAN](https://arxiv.org/pdf/1711.07064.pdf). You can find a tutorial on how it works on [Medium](https://blog.sicara.com/keras-generative-adversarial-networks-image-deblurring-45e3ab6977b5). Below is a sample result (from left to right: sharp image, blurred image, deblurred image)
![Sample results](./sample/results0.png)
# Installation
```
virtualenv venv -p python3
. venv/bin/activate
pip install -r requirements/requirements.txt
pip install -e .
```# Dataset
Get the [GOPRO dataset](https://drive.google.com/file/d/1H0PIXvJH4c40pk7ou6nAwoxuR4Qh_Sa2/view?usp=sharing), and extract it in the `deblur-gan` directory. The directory name should be `GOPRO_Large`.
Use:
```
python scripts/organize_gopro_dataset.py --dir_in=GOPRO_Large --dir_out=images
```# Training
```
python scripts/train.py --n_images=512 --batch_size=16 --log_dir /path/to/log/dir
```Use `python scripts/train.py --help` for all options
# Testing
```
python scripts/test.py
```Use `python scripts/test.py --help` for all options
# Deblur your own image
```
python scripts/deblur_image.py --weight_path=/path/to/generator.h5 --input_dir=/path/to/image/dir --output_dir=/path/to/deblurred/dir
```