Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rasbt/python_reference
Useful functions, tutorials, and other Python-related things
https://github.com/rasbt/python_reference
learning-python python-tips
Last synced: 4 days ago
JSON representation
Useful functions, tutorials, and other Python-related things
- Host: GitHub
- URL: https://github.com/rasbt/python_reference
- Owner: rasbt
- Created: 2013-10-29T22:04:12.000Z (about 11 years ago)
- Default Branch: master
- Last Pushed: 2022-06-27T11:54:42.000Z (over 2 years ago)
- Last Synced: 2025-01-17T01:03:18.773Z (11 days ago)
- Topics: learning-python, python-tips
- Language: Jupyter Notebook
- Homepage:
- Size: 8.78 MB
- Stars: 3,767
- Watchers: 235
- Forks: 931
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- fucking-lists - python_reference - related things. (Technical)
- awesomelist - python_reference - related things. (Technical / [email protected])
- collection - python_reference - related things. (Technical)
- lists - python_reference - related things. (Technical)
- awesome-python-models - python_reference
README
A collection of useful scripts, tutorials, and other Python-related things
- [// Python tips and tutorials](#-python-tips-and-tutorials)
- [// Python and the web](#-python-and-the-web)
- [// Algorithms](#-algorithms)
- [// Plotting and Visualization](#-plotting-and-visualization)
- [// Benchmarks](#-benchmarks)
- [// Python and "Data Science"](#-python-and-data-science)
- [// Useful scripts and snippets](#-useful-scripts-and-snippets)
- [// Other](#-other)
- [// Links](#-links)Python tips and tutorials [back to top]
- A collection of not so obvious Python stuff you should know! [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/not_so_obvious_python_stuff.ipynb?create=1)]
- Python's scope resolution for variable names and the LEGB rule [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/scope_resolution_legb_rule.ipynb?create=1)]
- Key differences between Python 2.x and Python 3.x [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb?create=1)]
- A thorough guide to SQLite database operations in Python [[Markdown](./tutorials/sqlite3_howto/README.md)]
- Unit testing in Python - Why we want to make it a habit [[Markdown](./tutorials/unit_testing.md)]
- Installing Scientific Packages for Python3 on MacOS 10.9 Mavericks [[Markdown](./tutorials/installing_scientific_packages.md)]
- Sorting CSV files using the Python csv module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/sorting_csvs.ipynb)]
- Using Cython with and without IPython magic [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/running_cython.ipynb)]
- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb?create=1)]
- Entry point: Data - using sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb?create=1)]
- Awesome things that you can do in IPython Notebooks (in progress) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/awesome_things_ipynb.ipynb)]
- A collection of useful regular expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/useful_regex.ipynb)]
- Quick guide for dealing with missing numbers in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/numpy_nan_quickguide.ipynb)]
- A random collection of useful Python snippets [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/python_patterns/patterns.ipynb)]
- Things in pandas I wish I'd had known earlier [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/things_in_pandas.ipynb)]
Python and the web [back to top]
- Creating internal links in IPython Notebooks and Markdown docs [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/table_of_contents_ipython.ipynb)]
- Converting Markdown to HTML and adding Python syntax highlighting [[Markdown](./tutorials/markdown_syntax_highlighting/README.md)]
Algorithms and Data Structures [back to top]*This category has been moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)*
- Sorting Algorithms [[Collection of IPython Notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks/tree/master/ipython_nbs/sorting)
- Linear regression via the least squares fit method [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/linregr_least_squares_fit.ipynb?create=1)]
- Dixon's Q test to identify outliers for small sample sizes [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/dixon_q_test.ipynb?create=1)]
- Counting points inside a hypercube [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/geometry/points_in_hybercube.ipynb)]
- Singly Linked List [[ IPython nbviewer ](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/data-structures/singly-linked-list.ipynb)]
Plotting and Visualization [back to top]*The matplotlib-gallery in IPython notebooks has been moved to a separate GitHub repository [matplotlib-gallery](https://github.com/rasbt/matplotlib-gallery)*
**Featured articles**:
- Preparing Plots for Publication [[IPython nb](http://nbviewer.ipython.org/github/rasbt/matplotlib-gallery/blob/master/ipynb/publication.ipynb)]
Benchmarks [back to top]- Simple tricks to speed up the sum calculation in pandas [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/benchmarks/pandas_sum_tricks.ipynb)]
*More benchmarks can be found in the separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)***Featured articles**:
- (C)Python compilers - Cython vs. Numba vs. Parakeet [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb)]
- Just-in-time compilers for NumPy array expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_2_jit_numpy.ipynb)]
- Cython - Bridging the gap between Python and Fortran [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb)]
- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb)]
- Vectorizing a classic for-loop in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day16_numpy_vectorization.ipynb)]
Python and "Data Science" [back to top]
*The "data science"-related posts have been moved to a separate GitHub repository [pattern_classification](https://github.com/rasbt/pattern_classification)*
**Featured articles**:
- Entry Point: Data - Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb)]
- About Feature Scaling: Standardization and Min-Max-Scaling (Normalization) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/preprocessing/about_standardization_normalization.ipynb)]
- Principal Component Analysis (PCA) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb)]
- Linear Discriminant Analysis (LDA) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/linear_discriminant_analysis.ipynb)]
- Kernel density estimation via the Parzen-window technique [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/parzen_window_technique.ipynb)]
Useful scripts and snippets [back to top]
- [watermark](https://github.com/rasbt/watermark) - An IPython magic extension for printing date and time stamps, version numbers, and hardware information.
- [Shell script](./useful_scripts/prepend_python_shebang.sh) For prepending Python-shebangs to .py files.
- A random string generator [function](./useful_scripts/random_string_generator.py).
- [Converting large CSV files](https://github.com/rasbt/python_reference/blob/master/useful_scripts/large_csv_to_sqlite.py) to SQLite databases using pandas.
- [Sparsifying a matrix](https://github.com/rasbt/python_reference/blob/master/useful_scripts/sparsify_matrix.py) by zeroing out all elements but the top k elements in a row using NumPy.
Other [back to top]
- [Python book reviews](./other/python_book_reviews.md)
- [Happy Mother's Day Plot](./other/happy_mothers_day.ipynb)
Links [back to top]
- [PyPI - the Python Package Index](https://pypi.python.org/pypi) - The official repository for all open source Python modules and packages.
- [PEP 8](https://www.python.org/dev/peps/pep-0008/) - The official style guide for Python code.
- [PEP 257](https://www.python.org/dev/peps/pep-0257/) - Python's official docstring conventions; [pep257 - Python style guide checker](https://pypi.python.org/pypi/pep257)
**// News**
- [Python subreddit](http://www.reddit.com/r/Python/) - My favorite resource to catch up with Python news and great Python-related articles.
- [Python community on Google+](https://plus.google.com/communities/103393744324769547228) - A nice and friendly community to share and discuss everything about Python.
- [Python Weekly](http://www.pythonweekly.com) - A free weekly newsletter featuring curated news, articles, new releases, jobs etc. related to Python.
**// Resources for learning Python**
- [Dive Into Python](http://www.diveintopython.net) / [Dive Into Python 3](http://getpython3.com/diveintopython3/) - A free Python book for experienced programmers.
- [The Hitchhiker’s Guide to Python](http://docs.python-guide.org/en/latest/) - A free best-practice handbook for both novices and experts.
- [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - An introduction for beginners starting with basic concepts of programming.
- [A Byte of Python](https://python.swaroopch.com/) - a free book on programming using the Python language.
- [Python Patterns](http://matthiaseisen.com/pp/) - A directory of proven, reusable solutions to common programming problems.
- [Intro to Computer Science - Build a Search Engine & a Social Network](https://www.udacity.com/course/intro-to-computer-science--cs101) - A great, free course for learning Python if you haven't programmed before.
**// My favorite Python projects and packages**
- [The IPython Notebook](http://ipython.org/notebook.html) - An interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document.
- [matplotlib](http://matplotlib.org) - Python's favorite plotting library.
- [NumPy](http://www.numpy.org) - A library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- [SciPy](http://www.scipy.org) - A library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ...
- [pandas](http://pandas.pydata.org) - High-performance, easy-to-use data structures and data analysis tools build on top of NumPy.
- [Cython](http://cython.org) - C-extensions for Python, an optimizing static compiler to combine Python and C code.
- [Numba](http://numba.pydata.org) - A just-in-time specializing compiler which compiles annotated Python and NumPy code to LLVM (through decorators)
- [scikit-learn](http://scikit-learn.org/stable/) - A powerful machine learning library for Python and tools for efficient data mining and analysis.