https://github.com/ratwolfzero/schroedingers_cat
Schrödinger’s Cat Simulation
https://github.com/ratwolfzero/schroedingers_cat
coherence decoherence probability-density python quantum-physics qutip schrodinger-equation schroedingers-cat wave-function wave-function-collapse
Last synced: 5 months ago
JSON representation
Schrödinger’s Cat Simulation
- Host: GitHub
- URL: https://github.com/ratwolfzero/schroedingers_cat
- Owner: ratwolfzero
- License: mit
- Created: 2025-08-28T13:40:58.000Z (6 months ago)
- Default Branch: main
- Last Pushed: 2025-09-07T02:49:55.000Z (5 months ago)
- Last Synced: 2025-09-07T04:26:32.851Z (5 months ago)
- Topics: coherence, decoherence, probability-density, python, quantum-physics, qutip, schrodinger-equation, schroedingers-cat, wave-function, wave-function-collapse
- Language: Python
- Homepage: https://github.com/ratwolfzero/Schroedingers_Cat
- Size: 14.9 MB
- Stars: 2
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Schrödinger’s Cat Simulation
This repository contains a **Python-based simulation of Schrödinger’s cat**, a famous quantum mechanics thought experiment, using the **QuTiP** library.
The simulation visualizes the quantum superposition of a cat being *alive* and *dead* in phase space via the **Wigner function**, showcasing:
* **Coherent evolution**
* **Decoherence**
* **Wave function collapse**

---
## 📖 Overview
Erwin Schrödinger’s 1935 thought experiment illustrates the paradoxical nature of quantum superposition when applied to macroscopic objects:
* A cat is sealed in a box with a radioactive atom, a Geiger counter, and a vial of poison.
* If the atom decays (50% probability), the poison is released → the cat dies.
* Until observed, quantum mechanics suggests the cat exists in a **superposition of alive and dead**.
This simulation models a **quantum analog of the cat state** using a **coherent state superposition** in a harmonic oscillator, visualized through the **Wigner function in phase space**.
It demonstrates:
* Coherent evolution under a Kerr Hamiltonian → twisting interference patterns
* Decoherence due to environmental interactions → fading quantum interference
* Interactive collapse via key press → mimicking measurement
---
## 🧮 Mathematical Background
The simulation is based on a quantum harmonic oscillator with Hilbert space dimension:
$$
N = 30
$$
### Initial Cat State
The Schrödinger cat state is a superposition of two coherent states:
$$
|\psi_\text{cat}\rangle = \frac{1}{\sqrt{2 \,(1 + e^{-2|\alpha|^2})}} \Big( |\alpha\rangle + |-\alpha\rangle \Big), \quad \alpha = 2.0
$$
where $|\alpha\rangle$ and $|-\alpha\rangle$ are coherent states with amplitudes $\alpha$ and $-\alpha$.
The corresponding density matrix is:
$$
\rho_0 = |\psi_\text{cat}\rangle \langle \psi_\text{cat}|
$$
---
### Wigner Function
The **Wigner function** $W(x,p)$ represents the quantum state in phase space, computed over a grid:
$$
x, p \in [-5, 5]
$$
* Two Gaussian peaks → “Alive” ($x \approx 2$) and “Dead” ($x \approx -2$)
* Interference fringes → signature of quantum superposition
Decomposition of the Wigner function:
$$
W(x,p) = \frac{1}{\mathcal{N}^2} \Big[ W_\alpha(x,p) + W_{-\alpha}(x,p) + W_\text{interf}(x,p) \Big]
$$
where:
* $W_\alpha(x,p)$ = Wigner function of $|\alpha\rangle$
* $W_{-\alpha}(x,p)$ = Wigner function of $|-\alpha\rangle$
* $W_\text{interf}(x,p)$ = interference term
* $\mathcal{N}^2 = 2(1 + e^{-2|\alpha|^2})$

---
## Simulation Phases
### 1. Coherent Evolution (t = 2 → 10)
The state evolves under a **Kerr Hamiltonian**:
$$
H_\text{Kerr} = \kappa \, (a^\dagger a)^2, \quad \kappa = 0.1
$$
* Non-linear shearing causes interference fringes to **twist into spirals**
* Gaussian blobs **distort** in phase space

---
### 2. Decoherence (t = 10 → 20)
After resetting to $\rho_0$, decoherence is applied via **amplitude damping**:
$$
c = \sqrt{\gamma} \, a, \quad \gamma = 0.05
$$
* No Hamiltonian applied ($H = 0$)
* Interference fringes **fade away**, leaving stationary blobs
* System resembles a **classical mixture**:
$$
\rho_\text{decoh} \approx \frac{1}{2} \Big( |\alpha\rangle \langle \alpha| + |-\alpha\rangle \langle -\alpha| \Big)
$$

---
### 3. Collapse (Interactive Measurement)
Pressing **“o”** collapses the wave function to:
$$
|\psi_\text{cat}\rangle \to
\begin{cases}
|\alpha\rangle & \text{"Alive"} \\
|-\alpha\rangle & \text{"Dead"}
\end{cases}
$$
The plot updates with a single labeled blob: **Alive** or **Dead**.

---
## 🔍 Interpreting the Results
* **t = 0 → 2 (Static Display):**
Two blobs (“Alive” at $x \approx 2$, “Dead” at $x \approx -2$) with straight interference fringes.
* **t = 2 → 10 (Coherent Evolution):**
Kerr Hamiltonian twists fringes into spirals, blobs distort.
* **t = 10 → 20 (Decoherence):**
Fringes fade, blobs remain stationary → classical mixture.
* **Collapse (press “o”):**
Single blob remains, labeled Alive or Dead.
---
## 🌌 Quantum Interpretations
* **Copenhagen:** Collapse occurs on measurement (“o” key)
* **Decoherence:** Environmental interaction destroys interference (phase 2)
* **Other views:** Many-Worlds, Bohmian Mechanics, QBism also consistent but not explicitly modeled
---
## Quantum Mechanics Timeline
The following timeline summarizes key milestones in quantum mechanics, highlighting contributions directly relevant to Schrödinger’s Cat (🐱) and tools used in modern simulations like the one described above (🛠️).
| Relevance | Year | Figure | Contribution |
| --------------- | ---- | ----------------------- | ----------------------------------------------------------------- |
| | 1900 | Planck | Quantum Hypothesis ("Revolutionary against his will") |
| | 1905 | Einstein | Photoelectric Effect (light as quanta) |
| | 1913 | Bohr | Atomic Model (quantized orbits) |
| | 1925 | Heisenberg | Matrix Mechanics (observables, not orbits) |
| 🐱🛠️ | 1926 | Schrödinger | Wave Mechanics (wavefunction dynamics) |
| 🐱 | 1926 | Born | Probabilistic Interpretation (wavefunction → probability) |
| 🐱 | 1927 | Bohr/Heisenberg | Copenhagen Interpretation (measurement & observer) |
| | 1928 | Dirac | Uniting QM with special relativity (prediction of antimatter) |
| 🐱 | 1932 | von Neumann | Mathematical Foundations (axioms, measurement theory) |
| 🐱🛠️ | 1932 | Wigner | Phase-space interpretation (Wigner function, quasi-probabilities) |
| 🐱 | 1935 | Einstein-Podolsky-Rosen | EPR Paradox (QM works, but is it complete? — still debated) |
| 🐱 | 1935 | Schrödinger | Schrödinger’s Cat (paradox of superposition) |
| 🐱🛠️ | 1970 | Zeh | Decoherence Theory (quantum-classical transition) |
| 🐱🛠️ | 1980s–2003 | Zurek | Decoherence and Quantum-Classical Transition (pointer states) |
**Legend**:
* 🐱: Directly relevant to Schrödinger’s Cat (superposition, measurement, entanglement).
* 🛠️: Relevant as a tool for modern simulations (e.g., wave mechanics, Wigner function, or decoherence used in QuTiP visualizations).
---
## 📚 References
* N. Lambert et al., *QuTiP 5: The Quantum Toolbox in Python*, arXiv:2412.04705 (December 6, 2024). [https://arxiv.org/abs/2412.04705](https://arxiv.org/abs/2412.04705)
* QuTiP: [https://qutip.org](https://qutip.org)
* Schrödinger, E. (1980). *The present situation in quantum mechanics*.
(J. D. Trimmer, Trans.).
Proceedings of the American Philosophical Society, 124(5), 323–338. (Original work published 1935)
* Wigner, E. P. (1932). On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40, 749–759.
* Zeh, H. D. (1970). *On the Interpretation of Measurement in Quantum Theory.* *Foundations of Physics* 1, 69–76.
* Zurek, W. H. (2003). *Decoherence and the Transition from Quantum to Classical.* [https://doi.org/10.48550/arXiv.quant-ph/0306072](https://doi.org/10.48550/arXiv.quant-ph/0306072)
* Becker R. (2025). Seeing Quantum Weirdness. Medium.
---
## Schrödinger's Cat Simulation technical FAQ
### Q: Why are the red blobs darker during decoherence?
A: This is a visualization effect to highlight the transition, not a physical change. The darker red results from the color scaling (vmin and vmax based on the maximum absolute Wigner value), which emphasizes the remaining amplitude after interference fades.
### Q: Why do the blobs shift slightly during decoherence?
A: In the simulation, amplitude damping with gamma = 0.05 may cause a slight contraction or shift of the initial coherent states toward the origin due to energy loss, a physical decoherence effect. In reality, this effect might be much smaller, depending on the physical system's decoherence rate.
### Q: Are the interference fringes correct?
A: Yes, the sparse fringes reflect the Wigner function’s quantum interference for alpha = 2.0. Adjust alpha or grid size (x, p) in the parameters to explore.
### Q: Is the time step (dt) accurate?
A: With 200 timesteps over 20 units, dt (~0.1) is sufficient. Increase timesteps for higher precision
### Q: Is amplitude damping the only decoherence model?
A: In this simulation, amplitude damping is the default decoherence model, implemented with a collapse operator (c_ops_decoherence) and a damping rate of gamma = 0.05. However, you can modify c_ops_decoherence in the code to include other decoherence models, such as dephasing, to explore different dynamics.
### Q: Is the Wigner function properly normalized?
A: Yes, QuTiP’s wigner ensures normalization. The vmin and vmax in contourf capture the full range—see the plotting section.
### Q: How does collapse work?
A: Pressing 'o' randomly selects a pure state (psi1 or psi2), simulating measurement per the Copenhagen interpretation.
### Q: Can I improve accuracy with higher N or grid resolution?
A: Yes, increase N (currently 30) or x, p grid (currently 130) in the parameters, though it may slow performance.