Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rauljordan/zeta.js
Implementation of the Riemann Zeta Function packaged as an NPM module
https://github.com/rauljordan/zeta.js
Last synced: 8 days ago
JSON representation
Implementation of the Riemann Zeta Function packaged as an NPM module
- Host: GitHub
- URL: https://github.com/rauljordan/zeta.js
- Owner: rauljordan
- License: other
- Created: 2014-12-27T04:17:14.000Z (almost 10 years ago)
- Default Branch: master
- Last Pushed: 2015-01-01T19:08:27.000Z (almost 10 years ago)
- Last Synced: 2024-10-14T04:48:46.817Z (about 1 month ago)
- Language: JavaScript
- Size: 418 KB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# zeta
[Riemann Zeta Function](http://en.wikipedia.org/wiki/Riemann_zeta_function)
in javascript with a 1.3% accuracy error[![browser support](http://ci.testling.com/rauljordan/zeta.js.png)](http://ci.testling.com/rauljordan/zeta.js)
[![Build Status](https://travis-ci.org/rauljordan/zeta.js.svg?branch=master)](https://travis-ci.org/rauljordan/zeta.js)
# example
```
> var zeta = require('riemann-zeta')
> zeta(0)
-0.5
> zeta(10)
1.00071
```# methods
var zeta = require('riemann-zeta')
## zeta(s)
Return the riemann zeta function over `s`.
# install
With [npm](http://npmjs.org) do:
```
npm install riemann-zeta
```# license
MIT
=======# credits
The approximation follows from the Euler-Maclaurin sum formula (Ralston and Rabinowitz, 2001 by not considering the impact of Bernoulli numbers on the
calculation and taking the case when the lower limit of integration
is specifically 2. Then, the approximation follows and works well enough
for modern browsers and mathematical applications.