Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/rauljordan/zeta.js

Implementation of the Riemann Zeta Function packaged as an NPM module
https://github.com/rauljordan/zeta.js

Last synced: 8 days ago
JSON representation

Implementation of the Riemann Zeta Function packaged as an NPM module

Awesome Lists containing this project

README

        

# zeta

[Riemann Zeta Function](http://en.wikipedia.org/wiki/Riemann_zeta_function)
in javascript with a 1.3% accuracy error

[![browser support](http://ci.testling.com/rauljordan/zeta.js.png)](http://ci.testling.com/rauljordan/zeta.js)

[![Build Status](https://travis-ci.org/rauljordan/zeta.js.svg?branch=master)](https://travis-ci.org/rauljordan/zeta.js)

# example

```
> var zeta = require('riemann-zeta')
> zeta(0)
-0.5
> zeta(10)
1.00071
```

# methods

var zeta = require('riemann-zeta')

## zeta(s)

Return the riemann zeta function over `s`.

# install

With [npm](http://npmjs.org) do:

```
npm install riemann-zeta
```

# license

MIT
=======

# credits
The approximation follows from the Euler-Maclaurin sum formula (Ralston and Rabinowitz, 2001 by not considering the impact of Bernoulli numbers on the
calculation and taking the case when the lower limit of integration
is specifically 2. Then, the approximation follows and works well enough
for modern browsers and mathematical applications.