Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rcamino/multi-categorical-gans
Code for the paper "Generating Multi-Categorical Samples with Generative Adversarial Networks"
https://github.com/rcamino/multi-categorical-gans
Last synced: 3 months ago
JSON representation
Code for the paper "Generating Multi-Categorical Samples with Generative Adversarial Networks"
- Host: GitHub
- URL: https://github.com/rcamino/multi-categorical-gans
- Owner: rcamino
- License: bsd-3-clause
- Created: 2018-07-02T11:59:17.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2023-07-06T21:31:52.000Z (over 1 year ago)
- Last Synced: 2024-04-08T02:26:42.907Z (7 months ago)
- Language: Python
- Size: 55.7 KB
- Stars: 50
- Watchers: 4
- Forks: 15
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-data-synthesis - MC-MedGAN - Multi-Categorical GANs - [Paper](https://arxiv.org/pdf/1807.01202.pdf) (Data-driven methods / Tabular)
README
# IMPORTANT UPDATE!
Please consider checking the [code](https://github.com/rcamino/imputation-dgm) for my new work [Improving Missing Value Imputation with Deep Generative Models](https://arxiv.org/abs/1902.10666).
# Multi-Categorical GANs
Code for the paper [Generating Multi-Categorical Samples with Generative Adversarial Networks](https://arxiv.org/abs/1807.01202)
## Pre-requisites
The project was developed using python 3.6.7 with the following packages:
- future==0.17.1
- numpy==1.16.0
- scikit-learn==0.20.2
- scipy==1.2.0
- torch==1.0.0Installation with pip:
```bash
pip install -r requirements.txt
```## Contents
- [Datasets](multi_categorical_gans/datasets)
- [Synthetic data generation](multi_categorical_gans/datasets/synthetic/)
- [US Census 1990](multi_categorical_gans/datasets/uscensus/)
- [Methods](multi_categorical_gans/methods)
- [ARAE and MC-ARAE](multi_categorical_gans/methods/arae/)
- [MedGAN and MC-MedGAN](multi_categorical_gans/methods/medgan/)
- [MC-Gumbel](multi_categorical_gans/methods/mc_gumbel/)
- [MC-WGAN-GP](multi_categorical_gans/methods/mc_wgan_gp/)
- [Metrics](multi_categorical_gans/metrics)## Changelog
- 2019-01-28: changed to Python 3 as suggested (and still compatible with 2.7 ... I hope).
- 2018-07-25: now we use WGAN-GP for ARAE following the author updates.