Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rcmalli/keras-squeezenet
SqueezeNet implementation with Keras Framework
https://github.com/rcmalli/keras-squeezenet
deeplearning keras squeezenet tensorflow
Last synced: 5 days ago
JSON representation
SqueezeNet implementation with Keras Framework
- Host: GitHub
- URL: https://github.com/rcmalli/keras-squeezenet
- Owner: rcmalli
- License: mit
- Created: 2016-10-08T12:29:26.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2023-02-24T15:38:04.000Z (almost 2 years ago)
- Last Synced: 2025-01-01T04:08:51.936Z (12 days ago)
- Topics: deeplearning, keras, squeezenet, tensorflow
- Language: Python
- Homepage:
- Size: 10.4 MB
- Stars: 404
- Watchers: 18
- Forks: 146
- Open Issues: 21
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-image-classification - unofficial-keras : https://github.com/rcmalli/keras-squeezenet
- awesome-image-classification - unofficial-keras : https://github.com/rcmalli/keras-squeezenet
README
# keras-squeezenet [![Build Status](https://travis-ci.org/rcmalli/keras-squeezenet.svg?branch=master)](https://travis-ci.org/rcmalli/keras-squeezenet)
SqueezeNet v1.1 Implementation using Keras Functional Framework 2.0This [network model](https://github.com/rcmalli/keras-squeezenet/blob/master/images/SqueezeNet.png) has AlexNet accuracy with small footprint (5.1 MB)
Pretrained models are converted from original Caffe network.~~~bash
# Most Recent One
pip install git+https://github.com/rcmalli/keras-squeezenet.git
# Release Version
pip install keras_squeezenet
~~~### News
- Project is now up-to-date with the new Keras version (2.0).
- Old Implementation is still available at 'keras1' branch but not updated.
### Library Versions
- Keras v2.1.1
- Tensorflow v1.4### Example Usage
~~~python
import numpy as np
from keras_squeezenet import SqueezeNet
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.preprocessing import imagemodel = SqueezeNet()
img = image.load_img('../images/cat.jpeg', target_size=(227, 227))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)preds = model.predict(x)
print('Predicted:', decode_predictions(preds))~~~
### References
1) [Keras Framework](www.keras.io)
2) [SqueezeNet Official Github Repo](https://github.com/DeepScale/SqueezeNet)
3) [SqueezeNet Paper](http://arxiv.org/abs/1602.07360)
### Licence
MIT License
Note: If you find this project useful, please include reference link in your work.