https://github.com/rcv911/emd
Empirical Mode Decomposition
https://github.com/rcv911/emd
data-analysis emd empirical-mode-decomposition
Last synced: 11 days ago
JSON representation
Empirical Mode Decomposition
- Host: GitHub
- URL: https://github.com/rcv911/emd
- Owner: rcv911
- Created: 2018-01-06T14:05:18.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2018-01-06T15:32:32.000Z (about 8 years ago)
- Last Synced: 2023-11-29T20:43:06.811Z (about 2 years ago)
- Topics: data-analysis, emd, empirical-mode-decomposition
- Language: Python
- Size: 1.11 MB
- Stars: 3
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# EMD = Empirical Mode Decomposition
## Description
[EMD](http://rspa.royalsocietypublishing.org/content/royprsa/454/1971/903.full.pdf) is a method for analysing non-stationary and nonlinear data.
I'm going to tell you main things about EMD:
- Method is locally adaptive, data-driven, multiscale, high efficient.
- The user specifies the number of mod.
- Fast oscillations superimposed to slow oscillations
(First mode = fast oscillations = high frequency. Last mode = slow oscillations = low frequency).
- Many applications to speech analysis (biological data, astronomical data, nonlinear physics data, earthquake, climate, etc.).
## Motivation
## Test Data
We are going to use noise sinus:
```python
noise = random.uniform(-0.05,0.05,10000)
signal = sin(2*pi*f*t) + noise
```


## Results
If number of mod = 2



If number of mod = 4




Result EMD for Van der Pol oscillator. The number of mod = 4.

## Learn more
- [Wiki EMD](https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform#Empirical_mode_decomposition_(EMD))
- [scipy.interpolate.splrep](https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html)
- [scipy.interpolate.splev](https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html)
< I'm going to add some useful links lately...
## Installation
You can use [Python](https://www.python.org/) with data package: [Anaconda](https://www.anaconda.com/) or [Miniconda](https://conda.io/miniconda).
There's another way - use [Portable Python](http://portablepython.com/). Also you can use whatever IDE for Python.
## License
Free