https://github.com/reachsumit/tensorflow-mobilenet-which-car-is-that
Android app containing an Image classifier based on transfer learning CNN using Tensorflow 1.4.1 on Stanford's Imagenet cars dataset
https://github.com/reachsumit/tensorflow-mobilenet-which-car-is-that
android-application deep-neural-networks imagenet-classifier imagenet-dataset java playstore-sample python-3 tensorflow tensorflow-android transfer-learning
Last synced: 22 days ago
JSON representation
Android app containing an Image classifier based on transfer learning CNN using Tensorflow 1.4.1 on Stanford's Imagenet cars dataset
- Host: GitHub
- URL: https://github.com/reachsumit/tensorflow-mobilenet-which-car-is-that
- Owner: reachsumit
- Created: 2018-01-05T16:37:39.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-01-20T17:27:18.000Z (over 7 years ago)
- Last Synced: 2025-03-29T16:51:12.585Z (about 2 months ago)
- Topics: android-application, deep-neural-networks, imagenet-classifier, imagenet-dataset, java, playstore-sample, python-3, tensorflow, tensorflow-android, transfer-learning
- Language: Java
- Homepage: https://play.google.com/store/apps/details?id=com.reachsumit.whichcaristhat&hl=en
- Size: 55.8 MB
- Stars: 16
- Watchers: 0
- Forks: 10
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Which car is that ?
Android app containing an Image classifier based on transfer learning CNN using Tensorflow 1.4.1 on Stanford's Imagenet cars dataset.
## Project details
* This application is a demonstration of an image classifier built using convolutional neural network.
* The model is trained on Stanford's imagenet dataset of 196 cars. Dataset can be accessed here: http://ai.stanford.edu/~jkrause/cars/car_dataset.html
* The Cars dataset contains 16,185 images of 196 classes of cars. Full list of cars is present here: https://paste.ubuntu.com/26311458/
* This project is published as an Android app available on Play Store. [LINK](https://play.google.com/store/apps/details?id=com.reachsumit.whichcaristhat&hl=en)
* For further details, please have a look at the Medium blogpost I wrote for this project. https://medium.com/@sumit.arora/training-a-neural-network-using-mobilenets-in-tensorflow-for-image-classification-on-android-14f2792f64c1## Screenshots
App on Play store
### Test 1
### Test 2
### Test 3
### Test 4
### Test 5
## Other commands
IMAGE_SIZE=224
ARCHITECTURE="mobilenet_0.75_${IMAGE_SIZE}"python -m scripts.retrain \
--bottleneck_dir=tf_files/bottlenecks \
--how_many_training_steps=5000 \
--model_dir=tf_files/models/"${ARCHITECTURE}" \
--summaries_dir=tf_files/training_summaries/"${ARCHITECTURE}" \
--output_graph=tf_files/retrained_graph.pb \
--output_labels=tf_files/retrained_labels.txt \
--architecture="${ARCHITECTURE}" \
--image_dir=tf_files/datasetpython -m scripts.retrain \
--image_dir=tf_files/dataset \
--learning_rate=0.0001 \
--testing_percentage=20 \
--validation_percentage=20 \
--train_batch_size=32 \
--validation_batch_size=-1 \
--flip_left_right True \
--random_scale=30 \
--random_brightness=30 \
--eval_step_interval=100 \
--how_many_training_steps=600 \
--architecture mobilenet_1.0_224