An open API service indexing awesome lists of open source software.

https://github.com/reachsumit/tensorflow-mobilenet-which-car-is-that

Android app containing an Image classifier based on transfer learning CNN using Tensorflow 1.4.1 on Stanford's Imagenet cars dataset
https://github.com/reachsumit/tensorflow-mobilenet-which-car-is-that

android-application deep-neural-networks imagenet-classifier imagenet-dataset java playstore-sample python-3 tensorflow tensorflow-android transfer-learning

Last synced: 22 days ago
JSON representation

Android app containing an Image classifier based on transfer learning CNN using Tensorflow 1.4.1 on Stanford's Imagenet cars dataset

Awesome Lists containing this project

README

        

# Which car is that ?
Android app containing an Image classifier based on transfer learning CNN using Tensorflow 1.4.1 on Stanford's Imagenet cars dataset.

![Android app icon](https://i.imgur.com/xxomPOZ.png)

## Project details
* This application is a demonstration of an image classifier built using convolutional neural network.
* The model is trained on Stanford's imagenet dataset of 196 cars. Dataset can be accessed here: http://ai.stanford.edu/~jkrause/cars/car_dataset.html
* The Cars dataset contains 16,185 images of 196 classes of cars. Full list of cars is present here: https://paste.ubuntu.com/26311458/
* This project is published as an Android app available on Play Store. [LINK](https://play.google.com/store/apps/details?id=com.reachsumit.whichcaristhat&hl=en)
* For further details, please have a look at the Medium blogpost I wrote for this project. https://medium.com/@sumit.arora/training-a-neural-network-using-mobilenets-in-tensorflow-for-image-classification-on-android-14f2792f64c1

## Screenshots
App on Play store
![App on Play store](https://i.imgur.com/0iCyds8.png)

### Test 1
![Test 1](https://i.imgur.com/EhfFxCq.jpg)

### Test 2
![Test 2](https://i.imgur.com/YuGf4s3.jpg)

### Test 3
![Test 3](https://i.imgur.com/xX2veJ9.jpg)

### Test 4
![Test 4](https://i.imgur.com/h7INKZg.jpg)

### Test 5
![Test 5](https://i.imgur.com/yh29bd9.jpg)

## Other commands

IMAGE_SIZE=224
ARCHITECTURE="mobilenet_0.75_${IMAGE_SIZE}"

python -m scripts.retrain \
--bottleneck_dir=tf_files/bottlenecks \
--how_many_training_steps=5000 \
--model_dir=tf_files/models/"${ARCHITECTURE}" \
--summaries_dir=tf_files/training_summaries/"${ARCHITECTURE}" \
--output_graph=tf_files/retrained_graph.pb \
--output_labels=tf_files/retrained_labels.txt \
--architecture="${ARCHITECTURE}" \
--image_dir=tf_files/dataset

python -m scripts.retrain \
--image_dir=tf_files/dataset \
--learning_rate=0.0001 \
--testing_percentage=20 \
--validation_percentage=20 \
--train_batch_size=32 \
--validation_batch_size=-1 \
--flip_left_right True \
--random_scale=30 \
--random_brightness=30 \
--eval_step_interval=100 \
--how_many_training_steps=600 \
--architecture mobilenet_1.0_224